Representation of Integer Numbers in Computer Systems
Positional Numbering System

Additive Systems – history but ... Roman numerals

Positional Systems:

\[A = \sum_{i=-\infty}^{+\infty} r_i a_i \]

- \(r \) – system base (radix)
- \(A \) – number value
- \(a \) – digit
- \(i \) – digit position

\[-11,3125_{\text{dec}} = -1101,0101_{\text{bin}} \]
\[0,1_{\text{dec}} = -0,0(0011)_{\text{bin}} \]

(!!! finit (rational) numbers may have infinite representation)
Base

System Base r (radix)

- constant value for all digit positions (fixed-radix)

 decimal, hexadecimal, octal, binary

- may have different values for digit positions (mixed-radix)

 time: hour, minute, second $r = (24, 60, 60)$
 angle: degree, minute, second $r = (360, 60, 60)$
 factoradic $r = (... 5!, 4!, 3!, 2!, 1!) = (... 120, 24, 6, 2, 1)$

 $54321_{\text{factoradic}} = 719_{\text{dec}}$
 $5 \times 5! + 4 \times 4! + 3 \times 3! + 2 \times 2! + 1 \times 1! = 719$

 primoradic $r = (... 11, 7, 5, 3, 2, 1)$

 $54321_{\text{primoradic}} = 69_{\text{dec}}$
 $5 \times 7 + 4 \times 5 + 3 \times 3 + 2 \times 2 + 1 \times 1 = 69$

- may be other than natural number (negative, rational, complex, ...)

 $54321_{-10} = -462810_{\text{dec}}$
Digits

- \(r\)-radix system using **standard digit set** \([0... r-1]\) is **non-redundant**:
 - binary \(\rightarrow\) \([0, 1]\)
 - decimal \(\rightarrow\) \([0... 9]\)
 - hexadecimal \(\rightarrow\) \([0... F]\)

- System using more digits than radix \(r\) is **redundant**:
 - binary \(\rightarrow\) \([0, 1, 2]\) or \([-1, 0, 1]\)
 - decimal \(\rightarrow\) \([0... F]\)
 - decimal \(\rightarrow\) \([0... 9 ♠, ♣, ♥, ♦]\)

- Representation in redundant systems is not unique:
 - binary \([0,1,2]\): \(1000 = 8_{\text{dec}}\) or \(0120 = 8_{\text{dec}}\)
Redundant Systems Taxonomy

Positional fixed-radix systems with \([-\alpha, \beta]\) digit set \(\rightarrow\) redundancy \(\rho=\alpha+\beta+1-r\)

Non-redundant
- \(\alpha=0\)
 - Conventional
 - Symmetric minimal GSD
 - \(r=2\)
 - Binary saved-carry (BSD)
 - Non-redundant signed-digit
 - \(\alpha=\beta\) (even \(r\))
 - Binary saved-carry (BSC)

Non-redundant signed-digit
- \(\alpha\geq1\)
 - Minimal GSD
 - \(\alpha=\beta\)
 - Generalized signed-digit (GSD)
 - \(\rho\geq1\)
 - Asymmetric non-minimal GSD
 - \(\alpha\neq\beta\)
 - Asymmetric non-minimal GSD
 - \(\alpha=0\)
 - Unsigned-digit redundant (UDR)
 - BSCB
 - \(\alpha=1\) (even \(r\))
 - Ordinary signed-digit (OSD)
 - Minimally redundant OSD
 - \(\alpha=r/2+1\)
 - Minimally redundant OSD
 - \(\alpha=r-1\)
 - Maximally redundant OSD
 - \(\alpha=1\) (odd \(r\))
 - Non-binary SB
 - Non-binary SB
 - \(\alpha<\beta\)
 - Ordinary signed-digit (OSD)
 - Minimally redundant OSD
 - \(\alpha=r/2+1\)
 - Minimally redundant OSD
 - \(\alpha=r-1\)
 - Maximally redundant OSD
 - \(\alpha\neq\beta\)
 - Asymmetric non-minimal GSD
 - \(\alpha=0\)
 - Unsigned-digit redundant (UDR)
 - BSCB
 - \(\alpha=1\) (even \(r\))
 - Ordinary signed-digit (OSD)
 - Minimally redundant OSD
 - \(\alpha=r/2+1\)
 - Minimally redundant OSD
 - \(\alpha=r-1\)
 - Maximally redundant OSD
 - \(\alpha=1\) (odd \(r\))
 - Non-binary SB
 - Non-binary SB
 - \(\alpha\neq\beta\)
 - Asymmetric non-minimal GSD
 - \(\alpha=0\)
 - Unsigned-digit redundant (UDR)
 - BSCB
 - \(\alpha=1\) (even \(r\))
 - Ordinary signed-digit (OSD)
 - Minimally redundant OSD
 - \(\alpha=r/2+1\)
 - Minimally redundant OSD
 - \(\alpha=r-1\)
 - Maximally redundant OSD
 - \(\alpha=1\) (odd \(r\))
 - Non-binary SB
 - Non-binary SB
 - \(\alpha\geq2\)
 - Non-minimal GSD
 - \(\alpha=\beta\)
 - Generalized signed-digit (GSD)
 - \(\rho\geq1\)
 - Asymmetric non-minimal GSD
 - \(\alpha\neq\beta\)
 - Asymmetric non-minimal GSD
 - \(\alpha=0\)
 - Unsigned-digit redundant (UDR)
 - BSCB
 - \(\alpha=1\) (even \(r\))
 - Ordinary signed-digit (OSD)
 - Minimally redundant OSD
 - \(\alpha=r/2+1\)
 - Minimally redundant OSD
 - \(\alpha=r-1\)
 - Maximally redundant OSD
 - \(\alpha=1\) (odd \(r\))
 - Non-binary SB
 - Non-binary SB
Capacity

In conventional (non-redundant) r-radix system, with n-digit number:
- the range of representation is $0 \ldots r^n-1$
- the number of unique representations is r^n
 - e.g. 8-bits binary \rightarrow range $0...255$, with 256 unique values

Number of digits needed to accommodate numbers from arbitrary range $0 \ldots \text{max}$:

$$n = \text{floor} \left(\log_r \text{max} \right) + 1 = \text{ceil} \left(\log_r (\text{max} + 1) \right)$$

e.g. for 50000 numbers (representations) in binary:

$$\log_2 49999+1 = 16.61 \rightarrow (\text{floor}) \rightarrow 16 \text{ digits (bits)}$$

$$\log_2 50000 = 15.61 \rightarrow (\text{ceil}) \rightarrow 16 \text{ digits (bits)}$$
Optimal radix?

What would 'the best' numbering system (in term of r) to represent numbers from a given range 0...max?

Criteria for conventional, non-redundant system:

- high capacity (\rightarrow small n)
- few symbols-digits (\rightarrow small r)
- convenient physical realization

Let's think of mathematical criteria:

$E(r) = r \cdot n$

... (where r is system radix for n-digit number)
Optimal radix?

Looking for maximum of function: \(E(r) = r \cdot n \)

\[
E(r) = r \cdot n = r \log_r (max + 1) = r \frac{\ln (max + 1)}{\ln(r)} = \ln (max + 1) \frac{r}{\ln(r)}
\]

\[
\frac{dE}{dr} = \ln (max + 1) \frac{\ln(r) - 1}{\ln^2(r)} = 0
\]

\[r_{optimal} = e = 2.71 \]

Optimal (according to \(E(r) \) criterion) radix is 3, but 2 is almost as good and offers better physical implementation possibilities.

\[
\frac{E(2)}{E(3)} = 1.056, \quad \frac{E(10)}{E(2)} = 1.5
\]
Non-Positional Numerical Codes

Gray Code – non-positional binary code

- codes of every two successive values differ in only one bit
- codes for first and last represented values also differ in only one bit (cyclic code)
- applications: hazard-free digital electronics (counters, A/D converters, angle/position sensors, etc.)

<table>
<thead>
<tr>
<th>value</th>
<th>Gray</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>1</td>
<td>0 0 1</td>
</tr>
<tr>
<td>2</td>
<td>0 1 1</td>
</tr>
<tr>
<td>3</td>
<td>0 1 0</td>
</tr>
<tr>
<td>4</td>
<td>1 1 0</td>
</tr>
<tr>
<td>5</td>
<td>1 1 1</td>
</tr>
<tr>
<td>6</td>
<td>1 0 1</td>
</tr>
<tr>
<td>7</td>
<td>1 0 0</td>
</tr>
</tbody>
</table>
Non-Positional Numerical Codes

BCD – Binary-Coded Decimal

- each decimal digit coded with 4 bits, one byte can accommodate positive numbers in range 0..99

- applications:
 - communication with digital 7-segment LED displays
 - direct operations on decimal numbers in binary code – no problems with decimal/binary/decimal conversions

<table>
<thead>
<tr>
<th>digit</th>
<th>BCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
</tr>
</tbody>
</table>

5127_{DEC} = 0101000100100111_{BCD}
Natural Binary Code (NBC)

- NBC features:
 - fixed radix-2 with two digits 0 and 1 → [0, 1] digit set
 - n-bit representation of non-negative values [0 ... 2^n-1]

\[a_{n-1} a_n ... a_1 a_0 = \sum_{i=0}^{n-1} 2^i a_i \]

- 4-bits: range 0 ... 2^4-1 → 0 ... 15
- 8-bits: range 0 ... 2^8-1 → 0 ... 255
- 16-bits: range 0 ... 2^{16}-1 → 0 ... 65 535
- 32-bits: range 0 ... 2^{32}-1 → 0 ... 4 294 967 295
- 64-bits: range 0 ... 2^{64}-1 → 0 ... 18 446 744 073 709 551 615

- NBC cannot represent negative values
Arithmetic Overflow in NBC

Overflow: result of addition is out of allowed range

- e.g. 8-bit addition:

 \[
 \begin{array}{c}
 11111111 \\
 + 00000001 \\
 \hline
 100000000
 \end{array}
 \]

 \[
 100000000 \text{ (9-bits)}
 \]

 Carry-bit (C) signals arithmetic overflow in NBC for unsigned arithmetics

 Carry-bit is always stored by Arithmetical-Logical Units for the purpose of result correctness control
Negative Numbers Coding

- Mapping negative numbers on range of positive rep.
- Simple arithmetic operations (addition/subtraction)
- Intuitive representation (?)

- Signed magnitude coding (SM)
- Biased coding (Bias-N or Excess-N)
- Complement coding (1C, 2C)
Signed-Magnitude (SM)

Oldest, simplest, but inconvenient

Binary n-digit SM code:
- most significant bit represents the sign of the number (1 – negative, 0 – positive)
- range of representation is symmetrical $[-2^{n-1} + 1, 2^{n-1} - 1]$

Advantages:
- intuitive representation
- symmetrical range
- simple negation

Disadvantages:
- complex arithmetical operations (addition/subtraction) !!!
- double representation of zero

\[
\begin{align*}
49_{\text{DEC}} &= 00110001_{\text{SM}} \\
-49_{\text{DEC}} &= 10110001_{\text{SM}} \\
+0_{\text{DEC}} &= 00000000_{\text{SM}} \\
-0_{\text{DEC}} &= 10000000_{\text{SM}}
\end{align*}
\]
SM Mapping

represented values

mapping onto NBC
Biased Coding (Excess-N)

- Range \([-N, +P]\) is mapped onto positive \([0, N+P]\)
- Conversion requires addition of a bias value

\([-4, +11]\) with bias=4 → \([0, 15]\)

e.g. \(-1 \rightarrow +3\)

Advantages:
- linear mapping – comparison of two numbers is easy

Disadvantages:
- addition/subtraction requires correction
- multiplication/division is difficult
Biased Coding

- Binary n-digit Excess-N code:
 - range of representation $[-2^{n-1}, 2^{n-1}-1]$
 - bias (N) amounts to 2^{n-1}
 - most significant bit corresponds to the sign
 (0 – negative, 1 – positive) \rightarrow opposite to SM and 2C
 - bias correction (addition/subtraction) is easy for $N=2^{n-1}$, toggling most significant bit
 - negation requires negation of all bits and addition of 1 to the total (same as in 2C)

\[
\begin{align*}
16_{\text{DEC}} & \rightarrow 16_{\text{DEC}} + \text{bias} = 16_{\text{DEC}} + 128_{\text{DEC}} = 10010000_{\text{Excess128}} \\
-16_{\text{DEC}} & \rightarrow -16_{\text{DEC}} + \text{bias} = -16_{\text{DEC}} + 128_{\text{DEC}} = 01110000_{\text{Excess128}}
\end{align*}
\]
Biased Coding – ADD/SUB Correction

Addition/subtraction can be performed according to the same rules as for NBC.

Result of addition/subtraction operations requires a correction:

\[X = x + \text{bias} \]
\[Y = y + \text{bias} \]

\[X + Y \rightarrow x + \text{bias} + y + \text{bias} = x + y + 2 \cdot \text{bias} \rightarrow X + Y - \text{bias} \]

\[X - Y \rightarrow x + \text{bias} - y - \text{bias} = x - y + 0 \cdot \text{bias} \rightarrow X - Y + \text{bias} \]
Biased Coding Mapping

- N -1 0 +P

mapping onto NBC

represented values
Complement Coding

- Range \([-N, +P]\) is mapped onto \([0, N+P]\)
- Positive numbers are identical with NBC
- Representation of negative numbers is calculated as complement to a constant \(M = N+P+1\)

\[-x \rightarrow M-x\]

\([-4, +11]\) with \(M=16\) → \([0, 15]\)

\(-1 \rightarrow 15\)

Advantages:

- simple arithmetic operations – identical as in NBC !!!

Disadvantages:

- non-intuitive representation (but not for computers...:)}
Binary 2's Complement Coding (2C)

- Range of n-bit number representation $[-2^{n-1}, 2^{n-1}-1]$
- Complement constant $M = 2^n$ (radix-complement)
- Most significant bit corresponds to the sign (1 – negative, 0 – positive)
- Negation:
 \[-x = 2^n - x = (2^n - 1) - x + 1 = 11...1_{\text{BIN}} - x + 1 = \text{bit_negation}(x) + 1\]
- Modulo-M arithmetics:
 - ignoring last carry bit (drop carry-out)
Negation in 2C

Negation of x:

a) simple rule (binary level): \(\text{bit_negation}(x) + 1 \)

b) from definition (all positional): \(-x \rightarrow M-x \)

c) from weighted-position formula (binary level):

\[
A_{2C} = -2^{n-1} a_{n-1} + \sum_{i=0}^{n-2} 2^i a_i
\]

- sign with negative weight
- magnitude in NBC
Arithmetic Overflow in 2C

- **Overflow**: result of operation is out of range:
 - bit V signals arithmetic overflow in 2C (signed-arithmetic)
 - overflow: two operands have the same sign, but different than result – comparison of MSB's
 - e.g. 8-bit: 01111111 + 00000001 = 10000000

- Overflow bit (V) is always calculated by Arithmetical-Logical Units for the purpose of correctness control

- Carry-bit (C) does not signal arithmetic overflow in 2C
 - e.g. 8-bit: 11111111 + 00000001 = 1 00000000
 (result is correct, C is ignored)
2C Mapping

represented values

mapping onto NBC

Increment

Increment
Binary 1's Complement Coding (1C)

- Range of representation $[-2^{n-1}+1, 2^{n-1}-1]$
- Complementation constant $M = 2^n-1$ (digit-complement)
- Most significant bit corresponds to the sign
 (1 – negative, 0 – positive)
- Double representation of zero
- Negation:
 \[-x = 2^n - 1 - x = 11...1_{\text{BIN}} - x = \text{bit_negation}(x)\]
- Modulo-M arithmetics
 - correction: adding carry bit from last position to the total
 (end-around carry)
1C Mapping

represented values

mapping onto NBC

Increment

Increment