
1

IceIce

Server-Side Slice-to-C++ Mapping

2

Server-Side Slice-to-C++ MappingServer-Side Slice-to-C++ Mapping

● The mapping for Slice data types to C++ is identical on the
client side and server side.

● For the server side, there are a few additional things you
need to know, specifically:
● How to initialize and finalize the server-side run time
● How to implement servants
● How to pass parameters and throw exceptions
● How to create servants and register them with the Ice run time.

3

The Server-Side The Server-Side mainmain Function Function

● The main entry point to the Ice run time is represented by the local interface
Ice::Communicator.

● As for the client side, you must initialize the Ice run time by calling
Ice::initialize before you can do anything else in your server.

● Ice::initialize returns a smart pointer to an instance of an Ice::Communicator:
int main(int argc, char* argv[])
{
Ice::CommunicatorPtr ic
= Ice::initialize(argc, argv);
// ...
}

● Ice::initialize accepts a C++ reference to argc and argv.
● The function scans the argument vector for any command-line options that

are relevant to the Ice run time.
● Any such options are removed from the argument vector so, when
Ice::initialize returns, the only options and arguments remaining
are those that concern your application.

● If anything goes wrong during initialization, initialize throws an exception.

4

The Server-Side The Server-Side mainmain Function Function

● Before leaving your main function, you must call
Communicator::destroy.

● The destroy operation is responsible for finalizing the Ice run
time.
● In particular, destroy waits for any operation implementations

that are still executing in the server to complete. In addition,
destroy ensures that any outstanding threads are joined with
and reclaims a number of operating system resources, such as
file descriptors and memory.

● Never allow your main function to terminate without calling
destroy first; doing so has undefined behavior.

5

The Server-Side The Server-Side mainmain Function Function
● The general shape of our server-side main function is

therefore as follows:
#include <Ice/Ice.h>
int
main(int argc, char* argv[])
{
 int status = 0;
 Ice::CommunicatorPtr ic;
 try {
 ic = Ice::initialize(argc, argv);
 // Server code here...
 } catch (const Ice::Exception& e) {
 cerr << e << endl;
 status = 1;
 } catch (const std::string& msg) {
 cerr << msg << endl;
 status = 1;
 } catch (const char* msg) {
 cerr << msg << endl;
 status = 1;
 }
 if (ic) {
 try {
 ic->destroy();
 } catch (const std::string& msg) {
 cerr << msg << endl;
 status = 1;
 }
 }
 return status;
}

#include <Ice/Ice.h>
int
main(int argc, char* argv[])
{
 int status = 0;
 Ice::CommunicatorPtr ic;
 try {
 ic = Ice::initialize(argc, argv);
 // Server code here...
 } catch (const Ice::Exception& e) {
 cerr << e << endl;
 status = 1;
 } catch (const std::string& msg) {
 cerr << msg << endl;
 status = 1;
 } catch (const char* msg) {
 cerr << msg << endl;
 status = 1;
 }
 if (ic) {
 try {
 ic->destroy();
 } catch (const std::string& msg) {
 cerr << msg << endl;
 status = 1;
 }
 }
 return status;
}

6

The The Ice::ApplicationIce::Application Class Class
● The preceding structure for the main function is so common

that Ice offers a class, Ice::Application, that
encapsulates all the correct initialization and finalization
activities.

namespace Ice {
 enum SignalPolicy { HandleSignals, NoSignalHandling };
 class Application /* ... */ {
 public:
 Application(SignalPolicy = HandleSignals);
 virtual ~Application();
 int main(int argc, char*[] argv);
 int main(int, char*[], const char* config);
 int main(int argc, char*[] argv,
 const Ice::InitializationData& id);
 int main(const Ice::StringSeq&);
 int main(const Ice::StringSeq&, const char* config);
 int main(const Ice::StringSeq&,
 const Ice::InitializationData& id);
 virtual int run(int, char*[]) = 0;
 static const char* appName();
 static CommunicatorPtr communicator();
 static bool interrupted();
 // ...
 };
}

namespace Ice {
 enum SignalPolicy { HandleSignals, NoSignalHandling };
 class Application /* ... */ {
 public:
 Application(SignalPolicy = HandleSignals);
 virtual ~Application();
 int main(int argc, char*[] argv);
 int main(int, char*[], const char* config);
 int main(int argc, char*[] argv,
 const Ice::InitializationData& id);
 int main(const Ice::StringSeq&);
 int main(const Ice::StringSeq&, const char* config);
 int main(const Ice::StringSeq&,
 const Ice::InitializationData& id);
 virtual int run(int, char*[]) = 0;
 static const char* appName();
 static CommunicatorPtr communicator();
 static bool interrupted();
 // ...
 };
}

7

The The Ice::ApplicationIce::Application Class Class
● The intent of this class is that you specialize Ice::Application and implement the pure

virtual run method in your derived class. Whatever code you would normally place in main
goes into the run method instead.

● Using Ice::Application, our program looks as follows:

● The class also handles the OS signals and, by default, shuts down the server cleanly.
● The interrupted function returns true if a signal caused the communicator to shut down,

false otherwise.
● This allows us to distinguish intentional shutdown from a forced shutdown that was caused

by a signal.

#include <Ice/Ice.h>
class MyApplication : virtual public Ice::Application {
 public:
 virtual int run(int, char*[]) {
 // Server code here...
 if (interrupted())
 cerr << appName() << ": terminating" << endl;
 return 0;
 }
};
int
main(int argc, char* argv[])
{
 MyApplication app;
 return app.main(argc, argv);
}

#include <Ice/Ice.h>
class MyApplication : virtual public Ice::Application {
 public:
 virtual int run(int, char*[]) {
 // Server code here...
 if (interrupted())
 cerr << appName() << ": terminating" << endl;
 return 0;
 }
};
int
main(int argc, char* argv[])
{
 MyApplication app;
 return app.main(argc, argv);
}

8

The The Ice::ApplicationIce::Application Class Class

● The Application::main function does the following:
● It installs an exception handler for Ice::Exception. If your code fails to

handle an Ice exception, Application::main prints the exception
details on stderr before returning with a non-zero return value.

● It installs exception handlers for const std::string & and const
char *. This allows you to terminate your server in response to a fatal
error condition by throwing a std::string or a string literal.
Application::main prints the string on stderr before returning a
nonzero return value.

● It initializes (by calling Ice::initialize) and finalizes (by calling
Communicator::destroy) a communicator. You can get access to the
communicator for your server by calling the static communicator()
member.

● It scans the argument vector for options that are relevant to the Ice run
time and removes any such options. The argument vector that is passed to
your run method therefore is free of Ice-related options and only contains
options and arguments that are specific to your application.

9

The The Ice::ApplicationIce::Application Class Class

● The Application::main function does also the following:
● It provides the name of your application via the static appName member

function. The return value from this call is argv[0], so you can get at
argv[0] from anywhere in your code by calling
Ice::Application::appName (which is usually required for error
messages).

● It creates an IceUtil::CtrlCHandler that properly destroys the
communicator.

● It installs a per-process logger, if the application has not already configured
one. The per-process logger uses the value of the Ice.ProgramName
property as a prefix for its messages and sends its output to the standard
error channel. An application can specify an alternate logger by including it
in the InitializationData structure.

● Using Ice::Application ensures that your program properly
finalizes the Ice run time, whether your server terminates normally or
in response to an exception or signal.

10

Mapping for InterfacesMapping for Interfaces

● The server-side mapping for interfaces provides an up-call
API for the Ice run time:
● By implementing virtual functions in a servant class, you

provide the hook that gets the thread of control from the Ice
server-side run time into your application code.

11

Skeleton ClassesSkeleton Classes
● On the client side, interfaces map to proxy classes.
● On the server side, interfaces map to skeleton classes.

● A skeleton is a class that has a pure virtual member function for each operation on
the corresponding interface.

● Consider the Slice definition for the Node interface:
module Filesystem {
 interface Node {
 idempotent string name();
 };
 // ...
};

● The Slice compiler generates the following definition for this interface:
namespace Filesystem {
 class Node : virtual public Ice::Object {
 public:
 virtual std::string name(const Ice::Current& =
 Ice::Current()) = 0;
 // ...
 };
 // ...
}

12

Skeleton ClassesSkeleton Classes

● As for the client side, Slice modules are mapped to C++
namespaces with the same name, so the skeleton class
definition is nested in the namespace Filesystem.

● The name of the skeleton class is the same as the name of
the Slice interface (Node).

● The skeleton class contains a pure virtual member function
for each operation in the Slice interface.

● The skeleton class is an abstract base class because its
member functions are pure virtual.

● The skeleton class inherits from Ice::Object (which
forms the root of the Ice object hierarchy).

13

Servant ClassesServant Classes
● In order to provide an implementation for an Ice object, you must

create a servant class that inherits from the corresponding
skeleton class.
#include <Filesystem.h> // Slice-generated header
class NodeI : public virtual Filesystem::Node {
 public:
 NodeI(const std::string&);
 virtual std::string name(const Ice::Current&);
 private:
 std::string _name;
};

● NodeI inherits from Filesystem::Node, that is, it derives from
its skeleton class.

● It is a good idea to always use virtual inheritance when defining
servant classes.
● Virtual inheritance is necessary only for servants that implement

interfaces that use multiple inheritance.

14

Servant ClassesServant Classes
● As far as Ice is concerned, the NodeI class must implement only

a single member function: the pure virtual name function that it
inherits from its skeleton.
● This makes the servant class a concrete class that can be

instantiated.
● You can add other member functions and data members as you see

fit to support your implementation.
● In the preceding definition, we added a _name member and a

constructor
NodeI::NodeI(const std::string& name) :
_name(name)
{
}
std::string
NodeI::name(const Ice::Current&) const
{
 return _name;
}

15

Parameter PassingParameter Passing

● For each parameter of a Slice operation, the C++ mapping
generates a corresponding parameter for the virtual member
function in the skeleton.

● In addition, every operation has an additional, trailing
parameter of type Ice::Current, which provides provides
access to additional information about the currently
executing request.

● Parameter passing on the server side follows the rules for
the client side:
● in-parameters are passed by value or const reference.
● out-parameters are passed by reference.
● return values are passed by value

16

Parameter PassingParameter Passing

module M {
 interface Example {
 string op(string sin, out string sout);
 };
};

module M {
 interface Example {
 string op(string sin, out string sout);
 };
};

namespace M {
 class Example : virtual public ::Ice::Object {
 public:
 virtual std::string op(const std::string&, std::string&,
 const Ice::Current& = Ice::Current()) = 0;
 // ...
 };
}

namespace M {
 class Example : virtual public ::Ice::Object {
 public:
 virtual std::string op(const std::string&, std::string&,
 const Ice::Current& = Ice::Current()) = 0;
 // ...
 };
}

● We could implement op as follows:

std::string
ExampleI::op(const std::string& sin,
 std::string& sout,
 const Ice::Current&)
{
 cout << sin << endl; // In parameters are initialized
 sout = "Hello World!"; // Assign out parameter
 return "Done"; // Return a string
}

std::string
ExampleI::op(const std::string& sin,
 std::string& sout,
 const Ice::Current&)
{
 cout << sin << endl; // In parameters are initialized
 sout = "Hello World!"; // Assign out parameter
 return "Done"; // Return a string
}

17

Raising ExceptionsRaising Exceptions

● To throw an exception from an operation implementation, you
simply instantiate the exception, initialize it, and throw it.

void Filesystem::FileI::write(const Filesystem::Lines& text,
 const Ice::Current&)
{
 // Try to write the file contents here...
 // Assume we are out of space...
 if (error) {
 Filesystem::GenericError e;
 e.reason = "file too large";
 throw e;
 }
};

● No memory management issues arise in the presence of
exceptions.

18

Raising ExceptionsRaising Exceptions
● The Slice compiler never generates exception specifications for

operations, regardless of whether the corresponding Slice operation
definition has an exception specification or not.
● C++ exception specifications do not add any value and are therefore not

used by the Ice C++ mapping.
● If you throw an arbitrary C++ exception (such as an int or other

unexpected type), the Ice run time catches the exception and then
returns an UnknownException to the client.

● Similarly, if you throw an “impossible” user exception (a user exception
that is not listed in the exception specification of the operation), the
client receives an UnknownUserException.

● If you throw a run-time exception, such as MemoryLimitException,
the client receives an UnknownLocalException.
● For that reason, you should never throw system exceptions from operation

implementations.
● If you do, all the client will see is an UnknownLocalException, which

does not tell the client anything useful.

19

Object IncarnationObject Incarnation

● Having created a servant class such as the rudimentary
NodeI class, you can instantiate the class to create a
concrete servant that can receive invocations from a client.

● Merely instantiating a servant class is insufficient to
incarnate an object.

● Specifically, to provide an implementation of an Ice object,
you must follow the following steps:
● Instantiate a servant class.
● Create an identity for the Ice object incarnated by the servant.
● Inform the Ice run time of the existence of the servant.
● Pass a proxy for the object to a client so the client can reach it.

20

Instantiating a ServantInstantiating a Servant
● Instantiating a servant means to allocate an instance on the

heap:
● NodePtr servant = new NodeI("Fred");

● This code creates a new NodeI instance on the heap and
assigns its address to a smart pointer of type NodePtr.
● This works because NodeI is derived from Node, so a smart pointer

of type NodePtr can also look after an instance of type NodeI.
● However, if we want to invoke a member function of the derived
NodeI class at this point, we have a problem: we cannot access
member functions of the derived NodeI class through a
NodePtr smart pointer, only member functions of Node base
class.

● To get around this, we can modify the code as follows:
typedef IceUtil::Handle<NodeI> NodeIPtr;
NodeIPtr servant = new NodeI("Fred");

21

Creating an IdentityCreating an Identity

● Each Ice object requires an identity. That identity must be unique for
all servants using the same object adapter.

● An Ice object identity is a structure with the following Slice definition:
module Ice {
 struct Identity {
 string name;
 string category;
 };
 // ...
};

● The full identity of an object is the combination of both the name and
category fields of the Identity structure.
● For now, we will leave the category field as the empty string and simply

use the name field.
● To create an identity, we simply assign a key that identifies the servant to the

name field of the Identity structure:
Ice::Identity id;
id.name = "Fred"; // Not unique, but good enough for now

22

Activating a ServantActivating a Servant
● Merely creating a servant instance does nothing: the Ice run time becomes aware of

the existence of a servant only once you explicitly tell the object adapter about the
servant.

● To activate a servant, you invoke the add operation on the object adapter.
● Assuming that we have access to the object adapter in the _adapter variable, we

can write:
● _adapter->add(servant, id);

● Note the two arguments to add: the smart pointer to the servant and the object
identity.

● Calling add on the object adapter adds the servant pointer and the servant’s identity
to the adapter’s servant map and links the proxy for an Ice object to the correct
servant instance in the server’s memory as follows:
● The proxy for an Ice object, apart from addressing information, contains the identity of the

Ice object. When a client invokes an operation, the object identity is sent with the request to
the server.

● The object adapter receives the request, retrieves the identity, and uses the identity as an
index into the servant map.

● If a servant with that identity is active, the object adapter retrieves the servant pointer from
the servant map and dispatches the incoming request into the correct member function on
the servant.

● Assuming that the object adapter is in the active state, client requests are
dispatched to the servant as soon as you call add.

23

Servant Life Time and Reference CountsServant Life Time and Reference Counts
● Putting the preceding points together, we can write a simple

function that instantiates and activates one of our NodeI
servants.

● For this example, we use a simple helper function called
activateServant that creates and activates a servant with a
given identity:

void activateServant(const string& name)
{
 NodePtr servant = new NodeI(name);
 // Refcount == 1
 Ice::Identity id;
 id.name = name;
 _adapter->add(servant, id);
 // Refcount == 2
}

24

Servant Life Time and Reference CountsServant Life Time and Reference Counts

● We create the servant on the heap and that, once activateServant
returns, we lose the last remaining handle to the servant.

● What happens to the heap-allocated servant instance?
● When the new servant is instantiated, its reference count is initialized to 0.
● Assigning the servant’s address to the servant smart pointer increments

the servant’s reference count to 1.
● Calling add passes the servant smart pointer to the object adapter which

keeps a copy of the handle internally. This increments the reference count
of the servant to 2.

● When activateServant returns, the destructor of the servant variable
decrements the reference count of the servant to 1.

● The net effect is that the servant is retained on the heap with a
reference count of 1 for as long as the servant is in the servant map of
its object adapter. (If we deactivate the servant, that is, remove it from
the servant map, the reference count drops to zero and the memory
occupied by the servant is reclaimed.

25

UUIDs as IdentitiesUUIDs as Identities
● The Ice object model assumes that object identities are globally

unique.
● One way of ensuring that uniqueness is to use UUIDs

(Universally Unique Identifiers) as identities.
● The IceUtil namespace contains a helper function to create such

identities:
#include <IceUtil/UUID.h>
#include <iostream>
using namespace std;
int main()
{
 cout << IceUtil::generateUUID() << endl;
}

● When executed, this program prints a unique string such as
5029a22c-e333-4f87-86b1-cd5e0fcce509.

● Each call to generateUUID creates a string that differs from all
previous ones.

26

UUIDs as IdentitiesUUIDs as Identities

● You can use a UUID such as this to create object identities.
● For convenience, the object adapter has an operation
addWithUUID that generates a UUID and adds a servant to
the servant map in a single step.

● Using this operation, we can rewrite the code like this:

void activateServant(const string& name)
{
 NodePtr servant = new NodeI(name);
 _adapter->addWithUUID(servant);
}

27

Creating ProxiesCreating Proxies
● Once we have activated a servant for an Ice object, the server

can process incoming client requests for that object.
● Clients can only access the object once they hold a proxy for the

object.
● If a client knows the server’s address details and the object identity,

it can create a proxy from a string.
● Creation of proxies by the client in this manner is usually only done

to allow the client access to initial objects for bootstrapping.
● Once the client has an initial proxy, it typically obtains further proxies

by invoking operations.
● The object adapter contains all the details that make up the

information in a proxy: the addressing and protocol information,
and the object identity.

● The Ice run time offers a number of ways to create proxies.
● Once created, you can pass a proxy to the client as the return

value or as an out-parameter of an operation invocation.

28

Proxies and Servant ActivationProxies and Servant Activation

● The add and addWithUUID servant activation operations
on the object adapter return a proxy for the corresponding
Ice object.

● This means we can write:
typedef IceUtil::Handle<NodeI> NodeIPtr;
NodeIPtr servant = new NodeI(name);
NodePrx proxy = NodePrx::uncheckedCast(
 _adapter->addWithUUID(servant));
// Pass proxy to client...

● Here, addWithUUID both activates the servant and returns
a proxy for the Ice object incarnated by that servant in a
single step.

● We need to use an uncheckedCast here because
addWithUUID returns a proxy of type Ice::ObjectPrx.

29

Direct Proxy CreationDirect Proxy Creation
● The object adapter offers an operation to create a proxy for a given

identity:
module Ice {
 local interface ObjectAdapter {
 Object* createProxy(Identity id);
 // ...
 };
};

● Note that createProxy creates a proxy for a given identity whether a
servant is activated with that identity or not. In other words, proxies
have a life cycle that is quite independent from the life cycle of
servants:
Ice::Identity id;
id.name = IceUtil::generateUUID();
ObjectPrx o = _adapter->createProxy(id);

● This creates a proxy for an Ice object with the identity returned by
generateUUID. Obviously, no servant yet exists for that object so, if
we return the proxy to a client and the client invokes an operation on
the proxy, the client will receive an ObjectNotExistException.

	Introduction to PETSc 2
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

