
1

IceIce

Advanced Server

2

Active Servant MapActive Servant Map

● Each object adapter maintains a data structure known as
the active servant map (ASM).
● Lookup table that maps object identities to servants:

● In C++ - smart pointer to the corresponding servant
● The process of associating a request via a proxy to the

correct servant is known as binding.

3

Servant Activation and DeactivationServant Activation and Deactivation
● Servant activation - making the presence of a servant for a

particular Ice object known to the Ice run time.
● Activating a servant adds an entry to the active servant map.

● The inverse operation is known as servant deactivation.
Deactivating a servant removes an entry for a particular
identity from the ASM.

module Ice {module Ice {

 local interface ObjectAdapter {local interface ObjectAdapter {

 // ...// ...

 Object* add(Object servant, Identity id);Object* add(Object servant, Identity id);

 Object* addWithUUID(Object servant);Object* addWithUUID(Object servant);

 Object remove(Identity id);Object remove(Identity id);

 Object find(Identity id);Object find(Identity id);

 Object findByProxy(Object* proxy);Object findByProxy(Object* proxy);

 // ...// ...

 };};

};};

4

Adapter StatesAdapter States
● An object adapter has a number of processing states:

● holding - incoming requests are not dispatched to servants
● active - the adapter accepts incoming requests and dispatches

them to servants
● inactive - in this state, the adapter has conceptually been

destroyed
module Ice {

 local interface ObjectAdapter {

 // ...

 void activate();

 void hold();

 void waitForHold();

 void deactivate();

 void waitForDeactivate();

 void isDeactivated();

 void destroy();

 // ...

 };

 };

5

Using Multiple Object AdaptersUsing Multiple Object Adapters

● Needed when:
● You need fine-grained control over which objects are

accessible.
● You could have an object adapter with only secure endpoints to

restrict access to some administrative objects, and another object
adapter with non-secure endpoints for other objects.

● You can firewall a particular port, so objects associated with the
corresponding endpoint cannot be reached unless the firewall
rules are satisfied.

● You need control over the number of threads in the pools for
different sets of objects in your application.

● You want to be able to temporarily disable processing new
requests for a set of objects. This can be accomplished by
placing an object adapter in the holding state.

6

The The Ice::CurrentIce::Current Object Object

module Ice {

 local dictionary<string, string> Context;

 enum OperationMode { Normal, \Nonmutating, \Idempotent };

 local struct Current {

 ObjectAdapter adapter;

 Connection con;

 Identity id;

 string facet;

 string operation;

 OperationMode mode;

 Context ctx;

 int requestId;

 };

};

7

Servant LocatorsServant Locators

● Using an adapter’s ASM to map Ice objects to servants has
a number of design implications:
● Each Ice object is represented by a different servant.
● All servants for all Ice objects are permanently in memory.

● Requirements:
● The server has sufficient memory available to keep a separate

servant instantiated for each Ice object at all times.
● The time required to initialize all the servants on startup is ‑

acceptable.
● Ice offers two APIs that help you scale servers to larger

numbers of objects:
● Servant locators
● Default servants

8

Servant Locator InterfaceServant Locator Interface

module Ice {

 local interface ServantLocator {

 ["UserException"]

 Object locate(Current curr,

 out LocalObject cookie);

 ["UserException"]

 void finished(Current curr,

 Object servant,

 LocalObject cookie);

 void deactivate(string category);

 };

};

9

Threading Guarantees for Servant LocatorsThreading Guarantees for Servant Locators

● The Ice run time guarantees that every operation invocation
that involves a servant locator is bracketed by calls to locate
and finished, that is, every call to locate is balanced by a
corresponding call to finished.

● In addition, the Ice run time guarantees that locate, the
operation, and finished are called by the same thread.
● It allows you to use locate and finished to implement thread-

specific pre- and post-processing around operation invocations.
● Beyond this, the Ice run time provides no threading

guarantees for servant locators. In particular:
● It is possible for invocations of locate to proceed concurrently

(for the same object identity or for different object identities)
● It is possible for invocations of finished to proceed concurrently
● It is possible for invocations of locate and finished to proceed

concurrently

10

Servant Locator RegistrationServant Locator Registration
module Ice {

 local interface ObjectAdapter {

 // ...

 void addServantLocator(ServantLocator locator,

 string category);

 ServantLocator removeServantLocator(string category);

 ServantLocator findServantLocator(string category);

 // ...

 };

};
● You can register exactly one servant locator for a specific category. Attempts

to call addServantLocator for the same category more than once raise an
AlreadyRegisteredException.

● You can register different servant locators for different categories, or you can
register the same single servant locator multiple times (each time for a
different category).

● It is legal to register a servant locator for the empty category. Such a servant
locator is known as a default servant locator.

11

Call Dispatch SemanticsCall Dispatch Semantics

1.Look for the identity in the ASM. If the ASM contains an entry,
dispatch the request to the corresponding servant.

2.If the category of the incoming object identity is non-empty, look for a
default servant that is registered for that category.

3.If the category of the incoming object identity is empty, or no default
servant could be found for the category in step 2, look for a default
servant that is registered for the empty category.

4.If the category of the incoming object identity is non-empty and no
servant could be found in the preceding steps, look for a servant
locator that is registered for that category.

5.If the category of the incoming object identity is empty, or no servant
locator could be found for the category in step 4, look for a default
servant locator (that is, a servant locator that is registered for the
empty category).

6.Raise ObjectNotExistException or
FacetNotExistException in the client.

12

Implementing a Simple Servant LocatorImplementing a Simple Servant Locator

struct Details {
 // Lots of details about the entry here...
};

interface PhoneEntry {
 idempotent Details getDetails();
 idempotent void updateDetails(Details d);
 // ...
};

struct SearchCriteria {
 // Fields to permit searching...
};

interface PhoneBook {
 idempotent PhoneEntry* search(SearchCriteria c);
 // ...
};

struct Details {
 // Lots of details about the entry here...
};

interface PhoneEntry {
 idempotent Details getDetails();
 idempotent void updateDetails(Details d);
 // ...
};

struct SearchCriteria {
 // Fields to permit searching...
};

interface PhoneBook {
 idempotent PhoneEntry* search(SearchCriteria c);
 // ...
};

13

Implementing a Simple Servant Locator (cont.)Implementing a Simple Servant Locator (cont.)

class MyServantLocator : public virtual Ice::ServantLocator {
public:

 virtual Ice::ObjectPtr locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie);

 virtual void finished(const Ice::Current& c,
 const Ice::ObjectPtr& servant,
 const Ice::LocalObjectPtr& cookie);

 virtual void deactivate(const std::string& category);
};

class MyServantLocator : public virtual Ice::ServantLocator {
public:

 virtual Ice::ObjectPtr locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie);

 virtual void finished(const Ice::Current& c,
 const Ice::ObjectPtr& servant,
 const Ice::LocalObjectPtr& cookie);

 virtual void deactivate(const std::string& category);
};

14

Implementing a Simple Servant Locator (cont.)Implementing a Simple Servant Locator (cont.)

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie)
{
 // Get the object identity. (We use the name member
 // as the database key.)
 //
 std::string name = c.id.name;

 // Use the identity to retrieve the state from the database.
 //
 ServantDetails d;
 try {
 d = DB_lookup(name);
 } catch (const DB_error&)
 return 0;
 }

 // We have the state, instantiate a servant and return it.
 //
 return new PhoneEntryI(d);
}

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie)
{
 // Get the object identity. (We use the name member
 // as the database key.)
 //
 std::string name = c.id.name;

 // Use the identity to retrieve the state from the database.
 //
 ServantDetails d;
 try {
 d = DB_lookup(name);
 } catch (const DB_error&)
 return 0;
 }

 // We have the state, instantiate a servant and return it.
 //
 return new PhoneEntryI(d);
}

15

Using the Using the categorycategory Member of the Object Identity Member of the Object Identity

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie)
{
 // Get the object identity. (We use the name member
 // as the database key.)
 //
 std::string name = c.id.name;
 std::string realId = c.id.name.substr(1);
 try {
 if (name[0] == 'd') {
 // The request is for a directory.
 //
 DirectoryDetails d = DB_lookup(realId);
 return new DirectoryI(d);
 } else {
 // The request is for a file.
 //
 FileDetails d = DB_lookup(realId);
 return new FileI(d);
 }
 } catch (DatabaseNotFoundException&) {
 return 0;
 }
}

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie)
{
 // Get the object identity. (We use the name member
 // as the database key.)
 //
 std::string name = c.id.name;
 std::string realId = c.id.name.substr(1);
 try {
 if (name[0] == 'd') {
 // The request is for a directory.
 //
 DirectoryDetails d = DB_lookup(realId);
 return new DirectoryI(d);
 } else {
 // The request is for a file.
 //
 FileDetails d = DB_lookup(realId);
 return new FileI(d);
 }
 } catch (DatabaseNotFoundException&) {
 return 0;
 }
}

16

Using the Using the categorycategory Member of the Object Identity Member of the Object Identity

class DirectoryLocator : public virtual Ice::ServantLocator {
public:
 virtual Ice::ObjectPtr locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie)
 { // Code to locate and instantiate a directory here... }
 virtual void finished(const Ice::Current& c,
 const Ice::ObjectPtr& servant,
 const Ice::LocalObjectPtr& cookie){}
 virtual void deactivate(const std::string& category){}
};

class FileLocator : public virtual Ice::ServantLocator {
public:
 virtual Ice::ObjectPtr locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie)
 { // Code to locate and instantiate a file here... }
 virtual void finished(const Ice::Current& c,
 const Ice::ObjectPtr& servant,
 const Ice::LocalObjectPtr& cookie){}
 virtual void deactivate(const std::string& category){}
};
// Register two locators, one for directories and
// one for files.
adapter>addServantLocator(new DirectoryLocator(), "d");‑
adapter>addServantLocator(new FileLocator(), "f");‑

class DirectoryLocator : public virtual Ice::ServantLocator {
public:
 virtual Ice::ObjectPtr locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie)
 { // Code to locate and instantiate a directory here... }
 virtual void finished(const Ice::Current& c,
 const Ice::ObjectPtr& servant,
 const Ice::LocalObjectPtr& cookie){}
 virtual void deactivate(const std::string& category){}
};

class FileLocator : public virtual Ice::ServantLocator {
public:
 virtual Ice::ObjectPtr locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie)
 { // Code to locate and instantiate a file here... }
 virtual void finished(const Ice::Current& c,
 const Ice::ObjectPtr& servant,
 const Ice::LocalObjectPtr& cookie){}
 virtual void deactivate(const std::string& category){}
};
// Register two locators, one for directories and
// one for files.
adapter>addServantLocator(new DirectoryLocator(), "d");‑
adapter>addServantLocator(new FileLocator(), "f");‑

17

Using CookiesUsing Cookies

● Occasionally, it can be useful to be able to pass information
between locate and finished.
● For example, the implementation of locate could choose

among a number of alternative database backends, depending
on load or availability and, to properly finalize state, the
implementation of finish might need to know which database
was used by locate.

● To support such scenarios, you can create a cookie in your
locate implementation; the Ice run time passes the value of the
cookie to finished after the operation invocation has completed.

18

Using CookiesUsing Cookies

class MyCookie : public virtual Ice::LocalObject {
public:
 // Whatever is useful here...
};

typedef IceUtil::Handle<MyCookie> MyCookiePtr;
class MyServantLocator : public virtual Ice::ServantLocator {
public:
 virtual Ice::ObjectPtr locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie)
 {
 cookie = new MyCookie(...);
 return new PhoneEntryI;
 }

 virtual void finished(const Ice::Current& c,
 const Ice::ObjectPtr& servant,
 const Ice::LocalObjectPtr& cookie)
 {
 MyCookiePtr mc = MyCookiePtr::dynamicCast(cookie);
 // Use information in cookie to clean up...
 }

 virtual void deactivate(const std::string& category);
};

class MyCookie : public virtual Ice::LocalObject {
public:
 // Whatever is useful here...
};

typedef IceUtil::Handle<MyCookie> MyCookiePtr;
class MyServantLocator : public virtual Ice::ServantLocator {
public:
 virtual Ice::ObjectPtr locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie)
 {
 cookie = new MyCookie(...);
 return new PhoneEntryI;
 }

 virtual void finished(const Ice::Current& c,
 const Ice::ObjectPtr& servant,
 const Ice::LocalObjectPtr& cookie)
 {
 MyCookiePtr mc = MyCookiePtr::dynamicCast(cookie);
 // Use information in cookie to clean up...
 }

 virtual void deactivate(const std::string& category);
};

19

Default ServantsDefault Servants

module Ice {

 local interface ObjectAdapter {

 void addDefaultServant(Object servant,

 string category);

 Object removeDefaultServant(string category);

 Object findDefaultServant(string category);

 // ...

 };

};

20

Default Servants - GuidelinesDefault Servants - Guidelines

● Object identity is the Key
● When an incoming request is dispatched to the default servant,

the target object identity is provided in the Current argument.
The name field of the identity typically supplies everything the
default servant requires in order to satisfy the request. For
instance, it may serve as the key in a database query, or even
hold an encoded structure in some proprietary format that your
application uses to convey more than just a string.

● Naturally, the client can also pass arguments to the operation
that assist the default servant in retrieving whatever state it
requires. However, this approach can easily introduce
implementation artifacts into your Slice interfaces, and in most
cases the client should not need to know that the server is
implemented with a default servant. If at all possible, use only
the object identity.

21

Default Servants - GuidelinesDefault Servants - Guidelines

● Minimize Contention
● For better scalability, the default servant’s implementation

should strive to eliminate contention among the dispatch
threads. As an example, when a database holds the default
servant’s state, each of the servant’s operations usually begins
with a query. Assuming that the database API is thread-safe,
the servant needs to perform no explicit locking of its own. With
a copy of the state in hand, the implementation can work with
function-local data to satisfy the request.

22

Default Servants - GuidelinesDefault Servants - Guidelines

● Combine Strategies
● The ASM still plays a useful role even in applications that are

ideally suited for default servants. For example, there is no
need to implement a singleton object as a default servant: if
there can only be one instance of the object, implementing it as
a default servant does nothing to improve your application’s
scalability.

● Applications often install a handful of servants in the ASM while
servicing the majority of requests in a default servant. For
example, a database application might install a singleton query
object in the ASM while using a default servant to process all
invocations on the database records.

23

Default Servants - GuidelinesDefault Servants - Guidelines

● Categories Denote Interfaces
● In general, all of the objects serviced by a default servant must

have the same interface. If you only need a default servant for
one interface, you can register the default servant with an
empty category string. However, to implement several
interfaces, you will need a default servant implementation for
each one. Furthermore, you must take steps to ensure that the
object adapter dispatches an incoming request to the
appropriate default servant. The category field of the object
identity is intended to serve this purpose.

● For example, a process control system might have interfaces
named Sensor and Switch. To direct requests to the proper
default servant, the application uses the symbol Sensor or
Switch as the category of each object’s identity, and registers
corresponding default servants having those same categories
with the object adapter.

24

Default Servants - GuidelinesDefault Servants - Guidelines

● Plan for the Future
● If you suspect that you might eventually need to implement

more than one interface with default servants, we recommend
using a non-empty category even if you start out having only
one default servant. Adding another default servant later
becomes much easier if the application is already designed to
operate correctly with categories.

● Throw exceptions
● If a request arrives for an object that no longer exists, it is the

default servant’s responsibility to raise
ObjectNotExistException.

25

Default Servants - GuidelinesDefault Servants - Guidelines

● Handle ice_ping
● The default implementation of ice_ping that the servant

inherits from its skeleton class always succeeds. For servants
that are registered with the ASM, this is exactly what we want;
however, for default servants, ice_ping must fail if a client
uses a proxy to a no-longer existent Ice object. To avoid getting
successful ice_ping invocations for non-existent Ice objects,
you must override ice_ping in the default servant. The
implementation must check whether the object identity for the
request denotes a still-existing Ice object and, if not, raise
ObjectNotExistException.

● Throw exceptions
● If a request arrives for an object that no longer exists, it is the

default servant’s responsibility to raise
ObjectNotExistException.

26

Incremental InitializationIncremental Initialization

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie)
{
 // Get the object identity. (We use the name member
 // as the database key.)
 std::string name = c.id.name;

 // Use the identity to retrieve the state from the database.
 ServantDetails d;
 try {
 d = DB_lookup(name);
 } catch (const DB_error&)
 return 0;
 }

 // We have the state, instantiate a servant.
 Ice::ObjectPtr servant = new PhoneEntryI(d);

 // Add the servant to the ASM.
 c.adapter->add(servant, c.id); // NOTE: Incorrect!

 return servant;
}

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie)
{
 // Get the object identity. (We use the name member
 // as the database key.)
 std::string name = c.id.name;

 // Use the identity to retrieve the state from the database.
 ServantDetails d;
 try {
 d = DB_lookup(name);
 } catch (const DB_error&)
 return 0;
 }

 // We have the state, instantiate a servant.
 Ice::ObjectPtr servant = new PhoneEntryI(d);

 // Add the servant to the ASM.
 c.adapter->add(servant, c.id); // NOTE: Incorrect!

 return servant;
}

27

Incremental InitializationIncremental Initialization

● Unfortunately, this implementation is wrong because it
suffers from a race condition.
● Consider the situation where we do not have a servant for a

particular Ice object in the ASM, and two clients more or less
simultaneously send a request for the same Ice object.

● It is entirely possible for the thread scheduler to schedule the
two incoming requests such that the Ice run time completes the
lookup in the ASM for both requests and, for each request,
concludes that no servant is in memory.

● The net effect is that locate will be called twice for the same Ice
object, and our servant locator will instantiate two servants
instead of a single servant.

● Because the second call to ObjectAdapter::add will raise
an AlreadyRegisteredException, only one of the two
servants will be added to the ASM.

28

Incremental InitializationIncremental Initialization

class MyServantLocator : public virtual Ice::ServantLocator {
public:

 virtual Ice::ObjectPtr locate(const Ice::Current& c,
 Ice::LocalObjectPtr&);

 // Declaration of finished() and deactivate() here...

private:
 IceUtil::Mutex _m;
};

class MyServantLocator : public virtual Ice::ServantLocator {
public:

 virtual Ice::ObjectPtr locate(const Ice::Current& c,
 Ice::LocalObjectPtr&);

 // Declaration of finished() and deactivate() here...

private:
 IceUtil::Mutex _m;
};

29

Incremental InitializationIncremental Initialization

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current& c,
 Ice::LocalObjectPtr&)
{
 IceUtil::Mutex::Lock lock(_m);
 // Check if we have instantiated a servant already.
 Ice::ObjectPtr servant = c.adapter.find(c.id);

 if (!servant) { // We don't have a servant already
 // Instantiate a servant.
 ServantDetails d;
 try {
 d = DB_lookup(c.id.name);
 } catch (const DB_error&) {
 return 0;
 }
 servant = new PhoneEntryI(d);

 // Add the servant to the ASM.
 //
 c.adapter->add(servant, c.id);
 }

 return servant;
}

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current& c,
 Ice::LocalObjectPtr&)
{
 IceUtil::Mutex::Lock lock(_m);
 // Check if we have instantiated a servant already.
 Ice::ObjectPtr servant = c.adapter.find(c.id);

 if (!servant) { // We don't have a servant already
 // Instantiate a servant.
 ServantDetails d;
 try {
 d = DB_lookup(c.id.name);
 } catch (const DB_error&) {
 return 0;
 }
 servant = new PhoneEntryI(d);

 // Add the servant to the ASM.
 //
 c.adapter->add(servant, c.id);
 }

 return servant;
}

30

Default ServantsDefault Servants

Filesystem::NodeSeq
Filesystem::DirectoryI::list(const Ice::Current& c) const
{
 // Use the identity of the directory to retrieve
 // its contents.
 DirectoryContents dc;
 try {
 dc = DB_getDirectory(c.id.name);
 } catch(const DB_error&) {
 throw Ice::ObjectNotExistException(__FILE__, __LINE__);
 }

 // Use the records retrieved from the database to
 // initialize return value.
 //
 FileSystem::NodeSeq ns;
 // ...

 return ns;
}

Filesystem::NodeSeq
Filesystem::DirectoryI::list(const Ice::Current& c) const
{
 // Use the identity of the directory to retrieve
 // its contents.
 DirectoryContents dc;
 try {
 dc = DB_getDirectory(c.id.name);
 } catch(const DB_error&) {
 throw Ice::ObjectNotExistException(__FILE__, __LINE__);
 }

 // Use the records retrieved from the database to
 // initialize return value.
 //
 FileSystem::NodeSeq ns;
 // ...

 return ns;
}

31

Overriding Overriding ice_pingice_ping

void
Filesystem::DirectoryI::ice_ping(const Ice::Current& c) const
{
 try {
 d = DB_lookup(c.id.name);
 } catch (const DB_error&) {
 throw Ice::ObjectNotExistException(__FILE__, __LINE__);
 }
}

void
Filesystem::DirectoryI::ice_ping(const Ice::Current& c) const
{
 try {
 d = DB_lookup(c.id.name);
 } catch (const DB_error&) {
 throw Ice::ObjectNotExistException(__FILE__, __LINE__);
 }
}

32

Servant EvictorsServant Evictors

● A variation on the previous theme and particularly
interesting use of a servant locator is as an evictor. An
evictor is a servant locator that maintains a cache of
servants:
● Whenever a request arrives (that is, locate is called by the Ice

run time), the evictor checks to see whether it can find a
servant for the request in its cache. If so, it returns the servant
that is already instantiated in the cache; otherwise, it
instantiates a servant and adds it to the cache.

● The cache is a queue that is maintained in least-recently used
(LRU) order.: the least-recently used servant is at the tail of the
queue, and the most-recently used servant is at the head of the
queue. Whenever a servant is returned from or added to the
cache, it is moved from its current queue position to the head
of the queue, that is, the “newest” servant is always at the
head, and the “oldest” servant is always at the tail.

33

Servant EvictorsServant Evictors

● The queue has a configurable length that corresponds to
how many servants will be held in the cache; if a request
arrives for an Ice object that does not have a servant in
memory and the cache is full, the evictor removes the least-
recently used servant at the tail of the queue from the cache
in order to make room for the servant about to be
instantiated at the head of the queue.

34

Evictor Implementation in C++Evictor Implementation in C++

class EvictorBase : public Ice::ServantLocator {
public:
 EvictorBase(int size = 1000);

 virtual Ice::ObjectPtr locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie);
 virtual void finished(const Ice::Current& c,
 const Ice::ObjectPtr&,
 const Ice::LocalObjectPtr& cookie);
 virtual void deactivate(const std::string&);

protected:
 virtual Ice::ObjectPtr add(const Ice::Current&,
 Ice::LocalObjectPtr&) = 0;
 virtual void evict(const Ice::ObjectPtr&,
 const Ice::LocalObjectPtr&) = 0;

private:
 // ...
};

typedef IceUtil::Handle<EvictorBase> EvictorBasePtr;

class EvictorBase : public Ice::ServantLocator {
public:
 EvictorBase(int size = 1000);

 virtual Ice::ObjectPtr locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie);
 virtual void finished(const Ice::Current& c,
 const Ice::ObjectPtr&,
 const Ice::LocalObjectPtr& cookie);
 virtual void deactivate(const std::string&);

protected:
 virtual Ice::ObjectPtr add(const Ice::Current&,
 Ice::LocalObjectPtr&) = 0;
 virtual void evict(const Ice::ObjectPtr&,
 const Ice::LocalObjectPtr&) = 0;

private:
 // ...
};

typedef IceUtil::Handle<EvictorBase> EvictorBasePtr;

35

Evictor Implementation in C++Evictor Implementation in C++

● Two main data structures are needed for implementation:
1.A map that maps object identities to servants, so we can efficiently decide

whether we have a servant for an incoming request in memory or not.

2.A list that implements the evictor queue. The list is kept in LRU order at all
times.

● The evictor map does not only store servants but also keeps track of
some administrative information:
1.The map stores the cookie that is returned from add, so we can pass that

same cookie to evict.

2.The map stores an iterator into the evictor queue that marks the position of
the servant in the queue. Storing the queue position is not strictly neces
sary—we store the position for efficiency reasons because it allows us to
locate a servant’s position in the queue in constant time instead of having
to search through the queue in order to maintain its LRU property.

3.The map stores a use count that is incremented whenever an operation is
dispatched into a servant, and decremented whenever an operation
completes.

36

Evictor Implementation in C++Evictor Implementation in C++

● The need for the use count deserves some extra explanation:
● Suppose a client invokes a long-running operation on an Ice object

with identity I.
● In response, the evictor adds a servant for I to the evictor queue.
● While the original invocation is still executing, other clients invoke

operations on various Ice objects, which leads to more servants for
other object identities being added to the queue.

● As a result, the servant for identity I gradually migrates toward the
tail of the queue.

● If enough client requests for other Ice objects arrive while the
operation on object I is still executing, the servant for I could be
evicted while it is still executing the original request.

37

Evictor Implementation in C++Evictor Implementation in C++

● By itself, this will not do any harm.
● However, if the servant is evicted and a client then invokes another

request on object I, the evictor would have no idea that a servant for I
is still around and would add a second servant for I.

● However, having two servants for the same Ice object in memory is
likely to cause problems, especially if the servant’s operation
implementations write to a database.

● The use count allows us to avoid this problem: we keep track of how
many requests are currently executing inside each servant and, while
a servant is busy, avoid evicting that servant.
● As a result, the queue size is not a hard upper limit: long-running

operations can temporarily cause more servants than the limit to
appear in the queue.

● However, as soon as excess servants become idle, they are evicted
as usual.

38

Evictor Implementation in C++Evictor Implementation in C++

● The evictor queue does not store the identity of the servant.
● Instead, the entries on the queue are iterators into the evictor map.
● This is useful when the time comes to evict a servant: instead of

having to search the map for the identity of the servant to be evicted,
we can simply delete the map entry that is pointed at by the iterator
at the tail of the queue.

● We can get away with storing an iterator into the evictor queue as
part of the map, and storing an iterator into the evictor map as part of
the queue because both std::list and std::map do not
invalidate forward iterators when we add or delete entries (except for
invalidating iterators that point at a deleted entry, of course).

● Finally, our locate and finished implementations will need to exchange
a cookie that contains a smart pointer to the entry in the evictor map.
● This is necessary so that finished can decrement the servant’s use

count.

39

Evictor Implementation in C++Evictor Implementation in C++

class EvictorBase : public Ice::ServantLocator {
 // ...
private:
 struct EvictorEntry;
 typedef IceUtil::Handle<EvictorEntry> EvictorEntryPtr;

 typedef std::map<Ice::Identity, EvictorEntryPtr> EvictorMap;
 typedef std::list<EvictorMap::iterator> EvictorQueue;

 struct EvictorEntry : public Ice::LocalObject
 {
 Ice::ObjectPtr servant;
 Ice::LocalObjectPtr userCookie;
 EvictorQueue::iterator queuePos;
 int useCount;
 };

 EvictorMap _map;
 EvictorQueue _queue;
 Ice::Int _size;

 IceUtil::Mutex _mutex;

 void evictServants();
};

class EvictorBase : public Ice::ServantLocator {
 // ...
private:
 struct EvictorEntry;
 typedef IceUtil::Handle<EvictorEntry> EvictorEntryPtr;

 typedef std::map<Ice::Identity, EvictorEntryPtr> EvictorMap;
 typedef std::list<EvictorMap::iterator> EvictorQueue;

 struct EvictorEntry : public Ice::LocalObject
 {
 Ice::ObjectPtr servant;
 Ice::LocalObjectPtr userCookie;
 EvictorQueue::iterator queuePos;
 int useCount;
 };

 EvictorMap _map;
 EvictorQueue _queue;
 Ice::Int _size;

 IceUtil::Mutex _mutex;

 void evictServants();
};

40

Evictor Implementation in C++Evictor Implementation in C++

EvictorBase::EvictorBase(Ice::Int size) : _size(size)
{
 if (_size < 0)
 _size = 1000;
}

EvictorBase::EvictorBase(Ice::Int size) : _size(size)
{
 if (_size < 0)
 _size = 1000;
}

41

Evictor Implementation in C++Evictor Implementation in C++

Ice::ObjectPtr
EvictorBase::locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie)
{
 IceUtil::Mutex::Lock lock(_mutex);

 //
 // Check if we have a servant in the map already.
 //
 EvictorEntryPtr entry;
 EvictorMap::iterator i = _map.find(c.id);
 if (i != _map.end()) {
 //
 // Got an entry already, dequeue the entry from
 // its current position.
 //
 entry = i->second;
 _queue.erase(entry->queuePos);
 } else

Ice::ObjectPtr
EvictorBase::locate(const Ice::Current& c,
 Ice::LocalObjectPtr& cookie)
{
 IceUtil::Mutex::Lock lock(_mutex);

 //
 // Check if we have a servant in the map already.
 //
 EvictorEntryPtr entry;
 EvictorMap::iterator i = _map.find(c.id);
 if (i != _map.end()) {
 //
 // Got an entry already, dequeue the entry from
 // its current position.
 //
 entry = i->second;
 _queue.erase(entry->queuePos);
 } else

42

Evictor Implementation in C++Evictor Implementation in C++

 {
 //
 // We do not have an entry. Ask the derived class to
 // instantiate a servant and add a new entry to the map.
 //
 entry = new EvictorEntry;
 entry->servant = add(c, entry->userCookie); // Down-call‑
 if (!entry->servant) {
 return 0;
 }
 entry->useCount = 0;
 i = _map.insert(std::make_pair(c.id, entry)).first;
 }

 //
 // Increment the use count of the servant and enqueue
 // the entry at the front, so we get LRU order.
 //
 ++(entry->useCount);
 entry->queuePos = _queue.insert(_queue.begin(), i);

 cookie = entry;

 return entry->servant;
}

 {
 //
 // We do not have an entry. Ask the derived class to
 // instantiate a servant and add a new entry to the map.
 //
 entry = new EvictorEntry;
 entry->servant = add(c, entry->userCookie); // Down-call‑
 if (!entry->servant) {
 return 0;
 }
 entry->useCount = 0;
 i = _map.insert(std::make_pair(c.id, entry)).first;
 }

 //
 // Increment the use count of the servant and enqueue
 // the entry at the front, so we get LRU order.
 //
 ++(entry->useCount);
 entry->queuePos = _queue.insert(_queue.begin(), i);

 cookie = entry;

 return entry->servant;
}

43

Evictor Implementation in C++Evictor Implementation in C++

void
EvictorBase::finished(const Ice::Current&,
 const Ice::ObjectPtr&,
 const Ice::LocalObjectPtr& cookie)
{
 IceUtil::Mutex::Lock lock(_mutex);

 EvictorCookiePtr ec = EvictorCookiePtr::dynamicCast(cookie);

 // Decrement use count and check if
 // there is something to evict.
 //
 --(ec->entry->useCount);
 evictServants();
}

void
EvictorBase::finished(const Ice::Current&,
 const Ice::ObjectPtr&,
 const Ice::LocalObjectPtr& cookie)
{
 IceUtil::Mutex::Lock lock(_mutex);

 EvictorCookiePtr ec = EvictorCookiePtr::dynamicCast(cookie);

 // Decrement use count and check if
 // there is something to evict.
 //
 --(ec->entry->useCount);
 evictServants();
}

44

Evictor Implementation in C++Evictor Implementation in C++

void
EvictorBase::evictServants()
{
 //
 // If the evictor queue has grown larger than the limit,
 // look at the excess elements to see whether any of them
 // can be evicted.
 //
 EvictorQueue::reverse_iterator p = _queue.rbegin();
 int excessEntries = static_cast<int>(_map.size() _size);‑

 for (int i = 0; i < excessEntries; ++i) {
 EvictorMap::iterator mapPos = *p;
 if (mapPos->second->useCount == 0) {
 evict(mapPos->second->servant,
 mapPos->second->userCookie);
 p = EvictorQueue::reverse_iterator(
 _queue.erase(mapPos->second->queuePos));
 _map.erase(mapPos);
 } else
 ++p;
 }
}

void
EvictorBase::evictServants()
{
 //
 // If the evictor queue has grown larger than the limit,
 // look at the excess elements to see whether any of them
 // can be evicted.
 //
 EvictorQueue::reverse_iterator p = _queue.rbegin();
 int excessEntries = static_cast<int>(_map.size() _size);‑

 for (int i = 0; i < excessEntries; ++i) {
 EvictorMap::iterator mapPos = *p;
 if (mapPos->second->useCount == 0) {
 evict(mapPos->second->servant,
 mapPos->second->userCookie);
 p = EvictorQueue::reverse_iterator(
 _queue.erase(mapPos->second->queuePos));
 _map.erase(mapPos);
 } else
 ++p;
 }
}

45

Evictor Implementation in C++Evictor Implementation in C++

void
EvictorBase::deactivate(const std::string& category)
{
 IceUtil::Mutex::Lock lock(_mutex);

 _size = 0;
 evictServants();
}

void
EvictorBase::deactivate(const std::string& category)
{
 IceUtil::Mutex::Lock lock(_mutex);

 _size = 0;
 evictServants();
}

46

Evictor Implementation in C++Evictor Implementation in C++

void
EvictorBase::evictServants()
{
 // More aggressive version
 // If the evictor queue has grown larger than the limit,
 // try to evict servants until the length drops
 // below the limit.
 //
 EvictorQueue::reverse_iterator p = _queue.rbegin();
 int numEntries = static_cast<int>_map.size();

 for (int i = 0; i < numEntries && _map.size() > _size; ++i) {
 EvictorMap::iterator mapPos = *p;
 if (mapPos->second->useCount == 0) {
 evict(mapPos->second->servant,
 mapPos->second->userCookie);
 p = EvictorQueue::reverse_iterator(
 _queue.erase(mapPos->second->queuePos));
 _map.erase(mapPos);
 } else
 ++p;
 }
}

void
EvictorBase::evictServants()
{
 // More aggressive version
 // If the evictor queue has grown larger than the limit,
 // try to evict servants until the length drops
 // below the limit.
 //
 EvictorQueue::reverse_iterator p = _queue.rbegin();
 int numEntries = static_cast<int>_map.size();

 for (int i = 0; i < numEntries && _map.size() > _size; ++i) {
 EvictorMap::iterator mapPos = *p;
 if (mapPos->second->useCount == 0) {
 evict(mapPos->second->servant,
 mapPos->second->userCookie);
 p = EvictorQueue::reverse_iterator(
 _queue.erase(mapPos->second->queuePos));
 _map.erase(mapPos);
 } else
 ++p;
 }
}

47

Using Servant EvictorsUsing Servant Evictors

● Using a servant evictor is simply a matter of deriving a class
from EvictorBase and implementing the add and evict
methods.
● You can turn a servant locator into an evictor by simply taking

the code that you wrote for locate and placing it into add -
EvictorBase then takes care of maintaining the cache in
least-recently used order and evicting servants as necessary.

● Unless you have cleanup requirements for your servants (such ‑
as closing network connections or database handles), the
implementation of evict can be left empty.

48

Using Servant EvictorsUsing Servant Evictors

● One of the nice aspects of evictors is that you do not need
to change anything in your servant implementation: the
servants are ignorant of the fact that an evictor is in use.
This makes it very easy to add an evictor to an already
existing code base with little disturbance of the source code.

● Evictors can provide substantial performance improvements
over default servants: especially if initialization of servants is
expensive (for example, because servant state must be
initialized by reading from a network), an evictor performs
much better than a default servant, while keeping memory
requirements low.

49

The Ice Threading ModelThe Ice Threading Model

● Ice is inherently a multi-threaded platform.
● There is no such thing as a single-threaded server in Ice.

● As a result, you must concern yourself with concurrency
issues: if a thread reads a data structure while another thread
updates the same data structure, havoc will ensue unless you
protect the data structure with appropriate locks.

● In order to build Ice applications that behave correctly, it is
important that you understand the threading semantics of the
Ice run time.

50

Introduction to Thread PoolsIntroduction to Thread Pools

● A thread pool is a collection of threads that the Ice
run time draws upon to perform specific tasks. Each
communicator creates two thread pools:
● The client thread pool services outgoing connections,

which primarily involves handling the replies to outgoing
requests and includes notifying AMI callback objects.

● If a connection is used in bidirectional mode, the client
thread pool also dispatches incoming callback requests.

● The server thread pool services incoming connections.
● It dispatches incoming requests and, for bidirectional

connections, processes replies to outgoing requests.

51

Introduction to Thread PoolsIntroduction to Thread Pools

● By default, these two thread pools are shared by all
of the communicator’s object adapters. If necessary,
you can configure individual object adapters to use a
private thread pool instead.

● If a thread pool is exhausted because all threads are
currently dispatching a request, additional incoming
requests are transparently delayed until a request
completes and relinquishes its thread; that thread is
then used to dispatch the next pending request. Ice
minimizes thread context switches in a thread pool
by using a leader-follower implementation.

52

Configuring Thread PoolsConfiguring Thread Pools

● Each thread pool has a unique name that serves as
the prefix for its configuration properties:
● name.Size

● This property specifies the initial size of the thread pool. If
not defined, the default value is one.

● name.SizeMax
● This property specifies the maximum size of the thread pool. If not

defined, the default value is one. If the value of this property is less than
that of name.Size, this property is adjusted to be equal to name.Size.

● name.SizeWarn
● This property sets a high water mark; when the number of threads in a

pool reaches this value, the Ice run time logs a warning message. If you
see this warning message frequently, it could indicate that you need to
increase the value of name.SizeMax. The default value is zero, which
disables the warning.

53

Configuring Thread PoolsConfiguring Thread Pools

● name.StackSize
● This property specifies the number of bytes to use as the stack size of

threads in the thread pool. The operating system’s default is used if this
property is not defined or is set to zero.

● name.Serialize
● Setting this property to a value greater than zero forces the thread pool

to serialize all messages received over a connection. It is unnecessary
to enable serialization for a thread pool whose maximum size is one
because such a thread pool is already limited to processing one
message at a time. For thread pools with more than one thread,
serialization has a negative impact on latency and throughput. If not
defined, the default value is zero.

● name.ThreadIdleTime
● This property specifies the number of seconds that a thread in the

thread pool must be idle before it terminates. The default value is 60
seconds if this property is not defined. Setting it to zero disables the
termination of idle threads.

54

Configuring Thread PoolsConfiguring Thread Pools

● For configuration purposes, the names of the client and server
thread pools are Ice.ThreadPool.Client and
Ice.ThreadPool.Server, respectively. As an example, the
following properties establish the initial and maximum sizes for
these thread pools:

● Ice.ThreadPool.Client.Size=1
● Ice.ThreadPool.Client.SizeMax=10
● Ice.ThreadPool.Server.Size=1
● Ice.ThreadPool.Server.SizeMax=10

● To monitor the thread pool activities of the Ice run time, you
can enable the Ice.Trace.ThreadPool property.

● Setting this property to a non-zero value causes the Ice run
time to log a message when it creates a thread pool, as well
as each time the size of a thread pool increases or
decreases.

55

Configuring Thread PoolsConfiguring Thread Pools

● A dynamic thread pool can grow and shrink when necessary in
response to changes in an application’s work load.

● All thread pools have at least one thread, but a dynamic thread
pool can grow as the demand for threads increases, up to the
pool’s maximum size.

● Threads may also be terminated automatically when they have
been idle for some time.

● The dynamic nature of a thread pool is determined by the
configuration properties name.Size, name.SizeMax, and
name.ThreadIdleTime.

● A thread pool is not dynamic in its default configuration because
name.Size and name.SizeMax are both set to one, meaning
the pool can never grow to contain more than a single thread.

● To configure a dynamic thread pool, you must set at least one of
name.Size or name.SizeMax to a value greater than one.

56

Adapter Thread PoolsAdapter Thread Pools

● The default behavior of an object adapter is to share the thread
pools of its communicator and, for many applications, this behavior
is entirely sufficient. However, the ability to configure an object
adapter with its own thread pool is useful in certain situations:

● When the concurrency requirements of an object adapter does not
match those of its communicator.
● In a server with multiple object adapters, the configuration of the

communicator’s client and server thread pools may be a good match for
some object adapters, but others may have different requirements.
● For example, the servants hosted by one object adapter may not support

concurrent access, in which case limiting that object adapter to a single-
threaded pool eliminates the need for synchronization in those servants.
On the other hand, another object adapter might need a multi-threaded
pool for better performance.

● To ensure that a minimum number of threads is available for dispatching
requests to an adapter’s servants. This is especially important for
eliminating the possibility of deadlocks when using nested invocations

57

Adapter Thread PoolsAdapter Thread Pools

● An object adapter’s thread pool supports all of the properties
described previously.
● For configuration purposes, the name of an adapter’s thread pool is
adapter.ThreadPool, where adapter is the name of the adapter.

● An adapter creates its own thread pool when at least one of the
following properties has a value greater than zero:
● adapter.ThreadPool.Size
● adapter.ThreadPool.SizeMax
● These properties have the same semantics as those described

earlier except they both have a default value of zero, meaning that
an adapter uses the communicator’s thread pools by default.

● As an example, the properties shown below configure a thread pool
for the object adapter named PrinterAdapter:

● PrinterAdapter.ThreadPool.Size=3
● PrinterAdapter.ThreadPool.SizeMax=15
● PrinterAdapter.ThreadPool.SizeWarn=14

58

Single-Threaded PoolSingle-Threaded Pool
● There are several implications of using a thread pool with a

maximum size of one thread:
● Only one message can be dispatched at a time.

● This can be convenient because it lets you avoid (or postpone) dealing
with thread-safety issues in your application.
● However, it also eliminates the possibility of dispatching requests

concurrently, which can be a bottleneck for applications running on
multi-CPU systems or that perform blocking operations. Another
option is to enable serialization in a multi-threaded pool.

● Only one AMI reply can be processed at a time.
● An application must increase the size of the client thread pool in order to

process multiple AMI callbacks in parallel.
● Nested twoway invocations are limited.

● At most one level of nested twoway invocations is possible.
● It is important to remember that a communicator’s client and

server thread pools have a default maximum size of one thread,
therefore these limitations also apply to any object adapter that
shares the communicator’s thread pools.

59

Multi-Threaded PoolMulti-Threaded Pool

● Configuring a thread pool to support multiple threads implies
that the application is prepared for the Ice run time to
dispatch operation invocations or AMI callbacks
concurrently.
● Although greater effort is required to design a thread-safe

application, you are rewarded with the ability to improve the
application’s scalability and throughput.

60

Multi-Threaded PoolMulti-Threaded Pool

● Choosing an appropriate maximum size for a thread pool
requires careful analysis of your application.
● For example, in compute-bound applications it is best to limit

the number of threads to the number of physical processors in
the host machine; adding any more threads only increases
context switches and reduces performance.

● Increasing the size of the pool beyond the number of
processors can improve responsiveness when threads can
become blocked while waiting for the operating system to
complete a task, such as a network or file operation.

● On the other hand, a thread pool configured with too many
threads can have the opposite effect and negatively impact
performance.

● Testing your application in a realistic environment is the
recommended way of determining the optimum size for a
thread pool.

61

Multi-Threaded PoolMulti-Threaded Pool

● If your application uses nested invocations, it is very
important that you evaluate whether it is possible for thread
starvation to cause a deadlock.
● Increasing the size of a thread pool can lessen the chance of a

deadlock, but other design solutions are usually preferred.

62

Nested InvocationsNested Invocations

● A nested invocation is one that is made within the context of
another Ice operation.
● For instance, the implementation of an operation in a servant

might need to make a nested invocation on some other object,
or an AMI callback object might invoke an operation in the
course of processing a reply to an asynchronous request.

● It is also possible for one of these invocations to result in a
nested callback to the originating process.

● The maximum depth of such invocations is determined by the
size of the thread pools used by the communicating parties.

63

DeadlocksDeadlocks
● Applications that use nested invocations must be carefully designed to

avoid the potential for deadlock, which can easily occur when
invocations take a circular path.

● The implementation of opA makes a nested twoway invocation of opB,
but the implementation of opB causes a deadlock when it tries to make
a nested callback.

● The communicator’s thread pools have a maximum size of one thread
unless explicitly configured otherwise.

● In Server A, the only thread in the server thread pool is busy waiting
for its invocation of opB to complete, and therefore no threads remain
to handle the callback from Server B.

● The client is now blocked because Server A is blocked, and they
remain blocked indefinitely unless timeouts are used.

64

DeadlocksDeadlocks

● There are several ways to avoid a deadlock in this scenario:
● Increase the maximum size of the server thread pool in Server

A.
● Configuring the server thread pool in Server A to support more

than one thread allows the nested callback to proceed.
● This is the simplest solution, but it requires that you know in

advance how deeply nested the invocations may occur, or that you
set the maximum size to a sufficiently large value that exhausting
the pool becomes unlikely.

● For example, setting the maximum size to two avoids a deadlock
when a single client is involved, but a deadlock could easily occur
again if multiple clients invoke opA simultaneously.

● Furthermore, setting the maximum size too large can cause its
own set of problems.

65

DeadlocksDeadlocks

● Use a oneway invocation.
● If Server A called opB using a oneway invocation, it would no longer

need to wait for a response and therefore opA could complete, making a
thread available to handle the callback from Server B.

● However, we have made a significant change in the semantics of opA
because now there is no guarantee that opB has completed before opA
returns, and it is still possible for the oneway invocation of opB to block.

● Create another object adapter for the callbacks.
● No deadlock occurs if the callback from Server B is directed to a

different object adapter that is configured with its own thread pool.
● Implement opA using asynchronous dispatch and invocation.

● By declaring opA as an AMD operation and invoking opB using AMI,
Server A can avoid blocking the thread pool’s thread while it waits for
opB to complete.

● This technique, known as asynchronous request chaining, is used
extensively in Ice services such as IceGrid and Glacier2 to eliminate the
possibility of deadlocks.

	Introduction to PETSc 2
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

