
© 2007 Xilinx, Inc. All Rights ReservedThis material exempt per Department of Commerce license exception TSU

Hardware Design Using
EDK

Objectives

After completing this module, you will be able to:

• Describe how to add hardware to an existing XPS project

• Discuss the function of Platform Generator (PlatGen)

• Utilize the integration between ISE™ and Xilinx Platform Studio

(XPS) to enhance the design flow

• Utilize the Xflow in XPS

• Describe the steps involved in creating a submodule with XPS and

integrating the submodule into a bigger system with ISE

Outline

• Adding System Components

• Generating the System netlists (PlatGen)

• Generating the Bitstream

– Manually with ISE: Project Navigator Integration

• Top Level

• Submodule

– Automatically from XPS: Xflow Integration

Embedded Design
Initial System created with Base System Builder targeting Spartan-3E Starter Kit

Embedded Design

MicroBlaze

PLB

Bus

UART

BRAM

DLMB

CNTLR

ILMB

CNTLR

Add GPIO Peripherals to connect to on-board DIP Switches and LEDs

MDM

Spartan-3E

RS232
LEDs

DIP

Spartan-3E Starter Kit

Adding IP to Design

• To add hardware in a new, empty

project or to an existing project,

select IP Catalog tab in XPS

• Expand group(s) of IP in the left

window

• Select an IP and drag it to the

System Assembly View window or

double-click on the selected IP to

be included into the system MHS

file

1

2

3

1

3
2

Embedded Design Progress

MicroBlaze

PLB

Bus

UART

BRAM

DLMB

CNTLR

ILMB

CNTLR

MDM

Spartan-3E

RS232
LEDs

DIP

Spartan-3E Starter Kit

GPIO

GPIO

GPIO Peripherals Added to System

Making Bus Connections

• Select Bus Interfaces

tab

• Expand Peripherals in

System View

• Click under Bus

Connection column,

and select a bus

instance to which it

needs to connect

2

1

2

1

3

3

MicroBlaze communicates with external peripheral devices using busses

Assigning Addresses

Lock addresses

and click generate

Lock addresses

and click generate

• Select Addresses filter

• Click in the size column and
select desired size

• Enter base address
– XPS will calculate the high

address from base address
and size entries

• Instead of entering base
address, lock addresses of
instances for which you don’t
want XPS to change address
and then click Generate
Addresses button

2

3

1

4

1

23

4

MicroBlaze communicates with external devices through registers or memories at specific address ranges

Hardware Design Progress

MicroBlaze

PLB

Bus

UART

BRAM

DLMB

CNTLR

ILMB

CNTLR

MDM

Spartan-3E

RS232
LEDs

DIP

Spartan-3E Starter Kit

GPIO

GPIO

GPIO instances are now connected to PLB bus, with Base/High Addresses Assigned

Parameterize IP Instances

Double click the
instance or right click
on the instance and
select Configure IP to
list the configurable
parameters

Enter new values
– Override defaults

1

2

1

Overriding values3

Set a GPIO to a 4-bit input to connect to the 4 DIP Switches on the Board

2

*Take similar steps for the

other GPIO

Connecting Ports

1

2

3

4

Select Ports filter

Click on plus sign to see
available ports

Click under the Net
column and select
appropriate signal

–If the port is external in the
design then make it external

Verify the external pin entry
in the External Ports
section

1

2

3

4

Hardware Design Progress

MicroBlaze

PLB

Bus

UART

BRAM

DLMB

CNTLR

ILMB

CNTLR

MDM

Spartan-3E

RS232
LEDs

DIP

Spartan-3E Starter Kit

GPIO

GPIO

External Port Connections for both GPIO instances have been established

Make Pin Assignments

1

2

Double-click the system.ucf under the Project tab

Enter the pin location constraints (refer to the board user manual)

1

2

Hardware Design Progress

MicroBlaze

PLB

Bus

UART

BRAM

DLMB

CNTLR

ILMB

CNTLR

MDM

Spartan-3E

RS232
LEDs

DIP

Spartan-3E Starter Kit

GPIO

GPIO

The GPIO instances are connected to the external DIP switches and LEDs on the board

Outline

• Adding System Components

• Generating the System Netlists (PlatGen)

• Generating the Bitstream

– Manually in ISE: Project Navigator Integration

• Top Level

• Submodule

– Automatically from XPS: Xflow Integration

Simulation

Generator

Hardware

Platform Generation

Library Generation

Embedded Software

Development

ISE
Tools

IP Library or User Repository

MSS

LibGen

.a

Compiler (GCC)

.o

Linker (GCC)

ELF

MHS

PlatGen
Drivers,

MDD
MPD, PAO

PCore
HDL System and

Wrapper HDL
system.bmm

Synthesis (XST)

NGC

NGDBuildUCF

NGD

MAP

NCD, PCF

PAR

NCD

BitGensystem.bit

BitInit

download.bit

iMPACT

system_bd.bmm

SimGen

Behavioral
VHD Model

SimGen

Structural
VHD Model

SimGen

Timing
VHD Model

Simulation

IP Models ISE Models
Testbench
Stimulus

CompEDKLib CompXLib

Application
Source
.c, .h, .s

Hardware Creation Flow

download.cmd

EDK SW
Libraries

Hardware Design

• After defining the system hardware and
connectivity, the next step is to create hardware
netlists with the Platform Generator (PlatGen)

• PlatGen inputs the following files:

– Microprocessor Hardware Specification (MHS) file

– Microprocessor Peripheral Definitions (MPD) file

• PlatGen constructs the embedded processor
system in the form of hardware netlists (HDL and
implementation netlist files)

Hardware Design Files

Microprocessor Peripheral

Definitions (MPD) File

Microprocessor Hardware

Specification (MHS) File

MHS overrides MPD

MPD contains all of the defaults

MHS and MPD

PlatGen

• HDL directory

– system.[vhd|v] file (if top level)

– system_stub.[vhd|v] file (if submodule)

– peripheral_wrapper.[vhd|v] files

• Implementation directory

– peripheral_wrapper.ngc files

– system.ngc file

– system.bmm file

• Synthesis directory

– peripheral_wrapper.[prj|scr] files

– system.[prj|scr] files

project_directory

hdl directory

implementation directory

PlatGen Generated Directories

synthesis directory

PlatGen Memory Generation

• Platform Generator generates the necessary
banks of memory and the initialization files for the
block RAM block (bram_block). The block RAM
block is coupled with a block RAM controller

• Current block RAM controllers for MicroBlaze
include the following:

– PLB block RAM controller (xps_bram_if_cntlr)

– OPB block RAM controller (opb_bram_if_cntlr)

– LMB block RAM controller (lmb_bram_if_cntlr)

PlatGen Memory Sizes

• Memory sizes

• Memory must be built on 2ⁿ boundaries
– Let I be the unsigned number formed by the starting address and S be the size of

the memory. If I/S is the integer, then the memory is built on the 2ⁿ boundary

– 1-KB (1024) memory at 0x4000 (16384) is at the 2ⁿ boundary (16384/1024 = 16);
whereas, 1 KB (1024) at 0x4100 (16640) is not (16640/1024 = 16.25)

Block Memory Map

• A Block RAM Memory Map (BMM) file contains a syntactic

description of how individual block RAMs constitute a contiguous

logical data space

• PlatGen has the following policy for writing a BMM file:

– If PORTA is connected and PORTB is not connected, the generated BMM

will be from PORTA point of reference

– If PORTA is not connected and PORTB is connected, the generated BMM

will be from PORTB point of reference

– If PORTA is connected and PORTB is connected, the generated BMM will

be from PORTA point of reference

Outline

• Adding System Components

• Generate the System Netlists (PlatGen)

• Generate the Bitstream

– Manually in ISE: Project Navigator Integration

– Automatically with XPS: Xflow Integration

Simulation

Generator

Hardware

Platform Generation

Library Generation

Embedded Software

Development

ISE
Tools

IP Library or User Repository

MSS

LibGen

.a

Compiler (GCC)

.o

Linker (GCC)

ELF

MHS

PlatGen
Drivers,

MDD
MPD, PAO

PCore
HDL System and

Wrapper HDL
bmm

Synthesis (XST)

NGC

NGDBuildUCF

NGD

MAP

NCD, PCF

PAR

NCD

BitGensystem.bit

BitInit

Download.bit

iMPACT

System_bd.bmm

SimGen

Behavioral
VHD Model

SimGen

Structural
VHD Model

SimGen

Timing
VHD Model

Simulation

IP Models ISE Models
Testbench
Stimulus

CompEDKLib CompXLib

Application
Source
.c, .h, .s

Hardware Implementation Flow

Download.cmd

EDK SW
Libraries

Outline

• Adding System Components

• Generate the System Netlists (PlatGen)

• Generate the Bitstream

– Manually in ISE: Project Navigator Integration

– Automatically with XPS: Xflow Integration

Manual ISE Flow

• The processor system (.xmp) can be added and
connected in an ISE project
– XPS can be invoked from ISE

• Benefits include
– Add additional logic to the FPGA design

– Synthesize the design by utilizing ISE™-supported synthesis tools

– Control the FPGA implementation flow by using ISE

• Timing and constraints entry

• Implementation tool flow control

• Point tool control

– FPGA Editor tool

– Constraints Editor tool

– ChipScope Pro tool

User generates bitstream in ISE

Instantiate Processor System in ISE

• Two ways to use the XPS and ISE tools to
process embedded systems:

– Top-Down

• Invoke ISE and create a top-level project

• Then create a new embedded processor
source to include in the top-level design.
This automatically invokes XPS, where
you develop your embedded sub-module

– Bottom-Up

• Invoke XPS and develop your embedded
processor design as a sub-module

• Later, invoke ISE and add the embedded
sub-module as a source to include in
your top-level ISE project.

Outline

• Adding System Components

• Generating the System Netlists (PlatGen)

• Generate the Bitstream

– Manually in ISE: Project Navigator Integration

– Automatically with XPS: Xflow Integration

Hardware Implementation
Automated Approach

• Xflow – Automatically implements hardware and generates the

bitstream

– Input files → .ngc netlists, system.bmm file, system.vhd, .ucf

– Output Files → system.bit, system_bd.bmm

– Xflow calls the ISE™ Implementation tools using fast_runtime.opt file

• NGDBuild, MAP, PAR, and TRACE are executed

– Xflow then calls the BitGen program using bitgen.ut file

• BitGen generates the bit file system.bit

• BitGen also generates the back-annotated system_bd.bmm BMM file, which

contains the physical location of the block RAMs

Automatic ISE Flow

• Benefits:

– Independent design of the processor system

– One GUI for performing all design work

• Limitations:

– No direct control of synthesis and implementation options

– No point-tool support

– The embedded system design must be the top level of the

design

XPS generates bitstream using Xflow

Xflow

• Code/TestApp directory

– <application>.c

• data directory

– <system>.ucf

• etc directory

– bitgen.ut

– download.cmd

– fast_runtime.opt

– BSDL files

• pcores directory

– User IP

– Customized block RAM controllers

project_directory

Code/TestApp directory [optional]

data directory

etc directory

pcores

Required XPS Directory Structure

synthesis

Controlling Xflow

• A file called fast_runtime is in the etc directory

• This is what it looks like:
Options for Translator

Type "ngdbuild -h" for a detailed list of ngdbuild command line options

Program ngdbuild

-p <partname>; # Partname to use — picked from xflow commandline

-nt timestamp; # NGO File generation. Regenerate only when

source netlist is newer than existing NGO file (default)

-bm <design>.bmm; # block RAM memory map file

<userdesign>; # User design — pick from xflow command line

<design>.ngd; # Name of NGD file. Filebase same as design filebase

End Program ngdbuild

Knowledge Check

• What are some of the advantages of using ISE™

and XPS integration?

• What are some of the advantages of using Xflow

and XPS integration?

Answers

• What are some of the advantages of using ISE™

and XPS integration?
– Add additional logic to the FPGA design

– Synthesize the design by utilizing ISE-supported synthesis tools

– Control the FPGA implementation flow by using ISE

• What are some of the advantages of using Xflow

and XPS integration?
– One GUI to perform all design work

– Simple push-button flow

Knowledge Check

• What is the smallest memory size that PlatGen can generate for a

Spartan™-IIE device?

• Why is the address 0xFFFF_B100 NOT a valid BASEADDR for a

Local Memory Bus (LMB) block RAM controller?

• What will the BAUDRATE for the peripheral be:

– If the MPD file has the following parameter: C_BAUDRATE = 9600

– If the MHS file has the following parameter: C_BAUDRATE = 115200

Answers

• What is the smallest memory size that PlatGen can generate for a

Spartan™-IIE device?

– 2 KB

• Why is the address 0xFFFF_B100 NOT a valid BASEADDR for a

Local Memory Bus (LMB) block RAM controller?

– It is not on a 2n boundary

• What will the BAUDRATE for the peripheral be:

– If the MPD file has the following parameter: C_BAUDRATE = 9600

– If the MHS file has the following parameter: C_BAUDRATE = 115200

• The BAUDRATE will be 115200

Knowledge Check:
Memory Space

• How do you build a 48-KB OPB BRAM memory space for a

MicroBlaze processor in a Spartan™-3E device?

? KB

? KB

0x

0x0000_0000

0x

0x

Answers:
Memory Space

• How do you build a 48-KB OPB BRAM memory space for a

MicroBlaze processor in a Spartan™-3E device?

32 KB

16 KB

0x0000_7FFF

0x0000_0000

0x0000_8000

0x0000_BFFF

Where Can I Learn More?

• Tool documentation

– Embedded System Tools Guide→ Xilinx Platform Studio

• Support Website

– EDK Website: www.xilinx.com/edk

