
© 2007 Xilinx, Inc. All Rights ReservedThis material exempt per Department of Commerce license exception TSU

Software Development

Objectives

After completing this module, you will be able to:

• Identify the functionality included in the GNU tools: GCC, AS, LD,

GDB

• Understand the basic concepts of the Eclipse IDE

• List Xilinx Software Development Kit (SDK) features

• Examine the IP driver’s functionality and design

• Examine the Xilinx Libraries

• Determine what a BSP is and what is included

Outline
• Introduction

• Software Settings
– Software Platform Settings

– Compiler Settings

• GNU Development Tools: GCC, AS, LD, Binutils

• Development Environments
– XPS

– SDK

• Device Drivers
– Level 0, Level 1

– MicroBlaze Processor: Interrupts

– Integration in EDK

• Libraries

• Board Support Packages
– Boot Files and Sequence

Desktop versus Embedded

• Desktop development:

written, debugged, and run on

the same machine

• OS loads the program into the

memory when the program

has been requested to run

• Address resolution takes

place at the time of loading by

a program called the loader

– The loader is included

in the OS

• The programmer glues into

one executable file called ELF

– Boot code, application

code, RTOS, and ISRs

– Address resolution takes

place during the gluing

stage

• The executable file is

downloaded into the target

system through different

methods

– Ethernet, serial, JTAG, BDM,

ROM programmer

Embedded versus Desktop
• Development takes place on one

machine (host) and is downloaded

to the embedded system (target)

On-Chip

Memory
Std JTAG

Port
GB I/O
Port

User

Ports

CS ICON

Cores
OCM IF

I/O Selection

Firmware
#Include stdio.h
Main()

Control
SystemICE

Core

Off & On-Chip Memory

PPC405 Dbg Facilities

CPU JTAG
Port

CPU Trace
Port

Core
ConnectTM

Other PPC405

Cores

Post First

Release

Host Computer

Target Computer

A cross-compiler is run on the host

Embedded Development

• Different set of problems

– Unique hardware for every design

– Reliability

– Real-time response requirement (sometimes)

• RTOS versus OS

– Code compactness

– High-level languages and assembly

Outline
• Introduction

• Software Settings
– Software Platform Settings

– Compiler Settings

• GNU Development Tools: GCC, AS, LD, Binutils

• Development Environments
– XPS

– SDK

• Device Drivers
– Level 0, Level 1

– MicroBlaze Processor: Interrupts

– Integration in EDK

• Libraries

• BSP
– Boot Files and Sequence

Simulation

Generator

Hardware

Platform Generation

Library Generation

Embedded Software

Development

ISE
Tools

IP Library or User Repository

MSS

LibGen

.a

Compiler (GCC)

.o

Linker (GCC)

ELF

MHS

PlatGen
Drivers,

MDD
MPD, PAO

PCore
HDL System and

Wrapper HDL
system.bmm

Synthesis (XST)

NGC

NGDBuildUCF

NGD

MAP

NCD, PCF

PAR

NCD

BitGensystem.bit

BitInit

download.bit

iMPACT

system_bd.bmm

SimGen

Behavioral
VHD Model

SimGen

Structural
VHD Model

SimGen

Timing
VHD Model

Simulation

IP Models ISE Models
Testbench
Stimulus

CompEDKLib CompXLib

Application
Source
.c, .h, .s

Library Generation (LibGen)

download.cmd

EDK SW
Libraries

Software Design
Environment

• The Library Generator (LibGen) utility generates the necessary

libraries and drivers for the embedded system

• LibGen takes an MSS (Microprocessor Software Specification) file

created by the user as input. The MSS file defines the drivers

associated with peripherals, standard input/output devices,

interrupt handler routines, and other related software features

• The MSS file is generated by XPS by using the software settings

specified

LibGen
• code directory

– A repository for EDK executables

– Creates xmdstub.elf for MB here

• include directory
– C header files that are required by

drivers

– xparameters.h

• Defines base and high
addresses of the peripherals in
the system

• Defines the peripheral IDs
required by the drivers and user
programs

• Defines the function prototypes

LibGen Generated Directories

project_directory

Processor instance directory

code directory

include directory

lib directory

libsrc directory

Note: The number of processor instance directories

generated is related to the number of

processor instances present in the system

Configures libraries and device drivers

LibGen

• lib directory

– libc.a, libm.a and libxil.a libraries

• The libxil library contains driver

functions that the particular

processor can access

• libsrc directory

– Intermediate files and makefiles that

compile the libraries and drivers

– Peripheral-specific driver files that

are copied from the EDK and user

driver directories

LibGen Generated Directories

project_directory

processor instance directory

code directory

include directory

lib directory

libsrc directory

Note: The processor instance directories

content is overwritten every time LibGen

is run

Outline
• Introduction

• Software Settings

– Software Platform Settings

– Compiler Settings

• GNU Development Tools: GCC, AS, LD, Binutils

• Development Environments

– XPS

– SDK

• Device Drivers

– Level 0, Level 1

– MicroBlaze Processor: Interrupts

– Integration in EDK

• Libraries

• BSP

– Boot Files and Sequence

Software Platform Settings

• Software settings can be

assigned to individual

processor instance by

selecting Software →
Software Platform Settings

or clicking button on the

toolbar

• In case of multiple processors

in the design software platform

settings allow you to select

each processor instance and

set parameters

Software Platform Settings (1)

1 2

3
4

1

2

3

4

Select Software

Platform panel

Select processor

instance

Select OS

Check desired

libraries and their

version

Software Platform Settings(2)

3

1

2

Select OS and

Libraries panel

Select processor

instance

Set stdin and stdout

devices as well as

assign fpu, malloc,

and profiling related

parameters

Configure selected

libraries parameters

1

2

3

4
4

Software Platform Settings(3)

2

1 Select Drivers panel

Select drivers and

version for each

device in the design

2

1

Outline
• Introduction

• Software Settings

– Software Platform Settings

– Compiler Settings

• GNU Development Tools: GCC, AS, LD, Binutils

• Development Environments

– XPS

– SDK

• Device Drivers

– Level 0, Level 1

– MicroBlaze Processor: Interrupts

– Integration in EDK

• Libraries

• BSP

– Boot Files and Sequence

Compiler Settings
• Compiler settings can be

assigned by double-clicking
Compiler Options entry under an
application in the Application tab

• Environment tab
– Application Mode

• Executable

• XmdStub (MicroBlaze™ processor
only)

– Use Custom Linker Script

• If checked then provide the path to
the linker script

– Use default Linker Script

• Program Start Address

• Stack Size

• Heap Size

Compiler Settings
• Debug and Optimization tab

– Optimization Parameters
• Optimization Level: 0 to 3

– While debugging your code, level 0 (no optimization) is recommended

– Levels 1 and above will cause code rearrangement

• Use Global Pointer Optimization
– Compiler stores all variables up to 8 bytes of size in a special area that can be accessed by

registers r2/r13 (called small data anchors) and a 16-bit offset

– Generate Debug Symbols
• Checking this option allows the
generation of debugging information
based on the option selected

• Create symbol for debugging
(-g option)

• Create symbols for assembly
(-gstabs option)

Compiler Settings

• Paths and Options tab
– Search Paths

• Library (-L)

• Include (-I)

– Libraries to Link against
• List user libraries to be
used

– Other compiler options to
append
• For example: -g

• See GNU docs for more
options

Outline
• Introduction

• Software Settings

– Software Platform Settings

– Compiler Settings

• GNU Development Tools: GCC, AS, LD, Binutils

• Development Environments

– XPS

– SDK

• Device Drivers

– Level 0, Level 1

– MicroBlaze Processor: Interrupts

– Integration in EDK

• Libraries

• BSP

– Boot Files and Sequence

Simulation

Generator

Hardware

Platform Generation

Library Generation

Embedded Software

Development

ISE
Tools

IP Library or User Repository

MSS

LibGen

.a

Compiler (GCC)

.o

Linker (GCC)

ELF

MHS

PlatGen
Drivers,

MDD
MPD, PAO

PCore
HDL System and

Wrapper HDL
system.bmm

Synthesis (XST)

NGC

NGDBuildUCF

NGD

MAP

NCD, PCF

PAR

NCD

BitGenSystem.bit

Data2MEM

download.bit

iMPACT

system_bd.bmm

SimGen

Behavioral
VHD Model

SimGen

Structural
VHD Model

SimGen

Timing
VHD Model

Simulation

IP Models ISE Models
Testbench
Stimulus

CompEDKLib CompXLib

Application
Source
.c, .h, .s

Software Development with GNU Tools

Download.cmd

EDK SW
Libraries

GNU Tools: GCC
• GCC translates C source code into

assembly language

• GCC also functions as the user interface
to the GNU assembler and to the GNU linker,
calling the assembler and the linker with
the appropriate parameters

• Supported cross-compilers:
– GNU GCC (mb-gcc)

• Command line only; uses the settings set
through the GUI

C files

Cross-compiler

Assembly
files

GNU Tools

• Calls four different executables

– Preprocessor (cpp0)

• Replaces all macros with

definitions defined in the source

and header files

– Language specific c-compiler

• cc1 C-programming language

• cc1plus C++ language

– Assembler

• mb-as

– Linker and loader

• mb-ld

GNU Tools: AS
• Input: Assembly language files

– File extension: .s

• Output: Object code
– File extension: .o

– Contains

• Assembled piece of code

• Constant data

• External references

• Debugging information

• Typically, the compiler automatically
calls the assembler

• Use the -Wa switch if the source files are
assembly only and use gcc

Assembly files

Cross-assembler

Object files

GNU Tools: LD

• Linker

• Inputs:

– Several object files

– Archived object files (library)

– Linker script (mapfile)

• Output:

– Executable image (.ELF)

Object

files
Linker

script

Linker/Locator

Executable

GNU Utilities

• AR Archiver
– Create, modify, and extract from libraries

– Used in EDK to combine the object files of the Board Support
Package (BSP) in a library

– Used in EDK to extract object files from different libraries

• Object Dump
– Display information from object files and executables

• Header information, memory map

• Data

• Disassemble code

See Embedded System Tools Reference Manual for Complete List of utilities

MicroBlaze Object Dump

Section

Name

Loadable

Memory

Address

Virtual

Memory

Address

Display summary information from the section headers

Section Size

Byte alignment

Offset from the beginning

of the section header table

mb-objdump –h executable.elf

MicroBlaze Object Dump

Memory

location

C code

instruction

Assembly

instruction

Dumping the source and assembly code

Machine Language

Instruction

mb-objdump –S executable.elf

Outline
• Introduction

• Software Settings

– Software Platform Settings

– Compiler Settings

• GNU Development Tools: GCC, AS, LD, Binutils

• Development Environments

– XPS

– SDK

• Device Drivers

– Level 0, Level 1

– MicroBlaze Processor: Interrupts

– Integration in EDK

• Libraries

• BSP

– Boot Files and Sequence

Software Development
Environment: XPS

Lists Software Projects

(Specifies processor instance,

groups source code according to

instance, xparameters.h, source and

header files)

Standard text editor for creating

c/c++ applications

Console displays status, errors,

and warnings

1

2

3

1 2

3

Outline
• Introduction

• Software Settings

– Software Platform Settings

– Compiler Settings

• GNU Development Tools: GCC, AS, LD, Binutils

• Development Environments

– XPS

– SDK

• Device Drivers

– Level 0, Level 1

– MicroBlaze Processor: Interrupts

– Integration in EDK

• Libraries

• BSP

– Boot Files and Sequence

• Java-based application development environment

• Based on the open-source effort by the Eclipse Consortium\

• Feature-rich C/C++ code editor and compilation environment

• Project management

• Application build configuration and automatic Makefile generation

• Error Navigation

• Well-integrated environment for seamless debugging of

embedded targets

• Source code version control

Software Development
Environment: SDK

Eclipse/CDT Frameworks
• Builder framework

– Compiles and Links Source files

– Default Build options are specified when application is created: Choice of Debug,
Release, Profile configurations

– User can custom build options later when developing application

– Build types: Standard Make, Managed Make

• Launch framework
– Specifies what action needs to be taken: Run (+ Profile) application or Debug

application

– In SDK, this is akin to the Target Connection settings

• Debug framework
– Launches debugger (gdb), loads application and begins debug session

– Debug views show information about state of debug session

– Hides ugliness of debug details

• Search framework
– Helps development of application

• Help System
– Online help system; context-sensitive

SDK Application Development Flow

Create software
App Project

Add sources
+ Edit

Compile + Link

Generate Hardware
Platform

Done?
Import ELF file,

Download to board

Debug / Profile

Platform Studio SDK

Yes

Generate Software
Platform

libraries,
drivers

Platform Studio

Libraries can be generate/updated from SDK

Workspaces and Perspectives

• Workspace
– Location to store preferences & internal info about Projects

– Transparent to SDK users

– In SDK, source files not stored under Workspace

• Views, Editors
– Basic User interface element

• Perspectives
– Collection of functionally related views

– Layout of views in a perspective can be customized according
to user preference

Views
• Eclipse Platform views: Navigator view, Tasks view, Problems

view

• Debug views: Stack view, Variables view

• C/C++ views: Projects view, Outline view

C/C++ Perspective

C/C++ project outline displays the
elements of a project with file
decorators (icons) for easy
identification

C/C++ editor for integrated
software creation

Code outline displays elements of
the software file under
development with file decorators
(icons) for easy identification

Problems, Console, Properties
view lists output information
associated with the software
development flow

1

2

3

4

1
2

3

4

Opening Perspectives and Views

• To open a Perspective, use

Window → Open Perspective

• To open a view, use

Window → Show View

If the view is already present in

the current perspective, the

view is highlighted

Editors
• bracket matching

• syntax coloring

• content assist

• refactoring

• keyboard shortcuts

Outline
• Introduction

• Software Settings

– Software Platform Settings

– Compiler Settings

• GNU Development Tools: GCC, AS, LD, Binutils

• Development Environments

– XPS

– SDK

• Device Drivers

– Level 0, Level 1

– MicroBlaze Processor: Interrupts

– Integration in EDK

• Libraries

• BSP

– Boot Files and Sequence

Device Drivers
• The Xilinx device drivers are designed to meet the following
objectives:
– Provide maximum portability

• The device drivers are provided as ANSI C source code

– Support FPGA configurability
• Supports multiple instances of the device without code duplication for each
instance, while at the same time managing unique characteristics on a per-
instance basis

– Support simple and complex use cases
• A layered device driver architecture provides both

– Simple device drivers with minimal memory footprints

– Full-featured device drivers with larger memory footprints

– Ease of use and maintenance
• Xilinx uses coding standards and provides well-documented source code
for developers

Outline
• Introduction

• Software Settings

– Software Platform Settings

– Compiler Settings

• GNU Development Tools: GCC, AS, LD, Binutils

• Development Environments

– XPS

– SDK

• Device Drivers

– Level 0, Level 1

– MicroBlaze Processor: Interrupts

– Integration in EDK

• Libraries

• BSP

– Boot Files and Sequence

Drivers: Level 0 / Level 1

• The layered architecture provides seamless integration with…

– (Layer 2) RTOS application layer

– (Layer 1) High-level device drivers that are full-featured and portable

across operating systems and processors

– (Layer 0) Low-level drivers for simple use cases

Layer 2, RTOS Adaptation

Layer 1, High-level Drivers

Layer 0, Low-level Drivers

Drivers: Level 0

• Consists of low-level device drivers

• Implemented as macros and functions that are designed to allow a

developer to create a small system

• Characteristics:

– Small memory footprint

– Little to no error checking is performed

– Supports primary device features only

– No support of device configuration parameters

– Supports multiple instances of a device with base address input to the API

– Polled I/O only

– Blocking function calls

– Header files have “_l” in their names (for example, xuartlite_l.h)

Drivers: Level 1
• Consists of high-level device drivers

• Implemented as macros and functions and designed to allow a
developer to utilize all of the features of a device

• Characteristics:
– Abstract API that isolates the API from hardware device changes

– Supports device configuration parameters

– Supports multiple instances of a device

– Polled and interrupt driven I/O

– Non-blocking function calls to aid complex applications

– May have a large memory footprint

– Typically, provides buffer interfaces for data transfers as opposed to byte
interfaces

– Header files do not have “_l” in their names (for example, xuartlite.h)

Comparison Example

• Uartlite Level 1
– XStatus XUartLite_Initialize (XUartLite *InstancePtr, Xuint16 DeviceId)

– void XUartLite_ResetFifos (XUartLite *InstancePtr)

– unsigned int XUartLite_Send (XUartLite *InstancePtr, Xuint8 *DataBufferPtr, unsigned int NumBytes)

– unsigned int XUartLite_Recv (XUartLite *InstancePtr, Xuint8 *DataBufferPtr, unsigned int NumBytes)

– Xboolean XUartLite_IsSending (XUartLite *InstancePtr)

– void XUartLite_GetStats (XUartLite *InstancePtr, XUartLite_Stats *StatsPtr)

– void XUartLite_ClearStats (XUartLite *InstancePtr)

– XStatus XUartLite_SelfTest (XUartLite *InstancePtr)

– void XUartLite_EnableInterrupt (XUartLite *InstancePtr)

– void XUartLite_DisableInterrupt (XUartLite *InstancePtr)

– void XUartLite_SetRecvHandler (XUartLite *InstancePtr, XUartLite_Handler FuncPtr, void *CallBackRef)

– void XUartLite_SetSendHandler (XUartLite *InstancePtr, XUartLite_Handler FuncPtr, void *CallBackRef)

– void XUartLite_InterruptHandler (XUartLite *InstancePtr)

• Uartlite Level 0
– void XUartLite_SendByte (Xuint32 BaseAddress, Xuint8 Data)

– Xuint8 XUartLite_RecvByte (Xuint32 BaseAddress)

Outline
• Introduction

• Software Settings

– Software Platform Settings

– Compiler Settings

• GNU Development Tools: GCC, AS, LD, Binutils

• Development Environment

– XPS

– SDK

• Device Drivers

– Level 0, Level 1

– MicroBlaze Processor: Interrupts

– Integration in EDK

• Libraries

• BSP

– Boot Files and Sequence

Interrupt Management
With Interrupt Controller

• The interrupt controller is required if more than one interrupting

device is present
– Connect peripheral’s interrupt requesting signals to the Intr port of the interrupt

controller in the MHS file

e.g., PORT Intr = RS232_Interrupt & interrupt_push & interrupt_timer

– Connect interrupt controller output intc to a processor interrupt pin

e.g., PORT Irq = interrupt_req

– Define an external requesting signal, if needed, in the global ports section of the

MHS file

e.g., PORT interrupt_in1 = interrupt_in1, DIR = IN, LEVEL = low, SIGIS = Interrupt

– Connect the external interrupt signal to the Intr port of the interrupt controller

Interrupt Management
Without Interrupt Controller

• The interrupt controller is not required when only one interrupting

device is present

– The interrupt signal of the peripheral (or the external interrupt signal) must

be connected to the interrupt input of the MicroBlaze™ processor in the

MHS file

• Software interface for the interrupt

– Define the signal in MSS file to associate them to peripherals

e.g., PARAMETER int_handler = uart_int_handler, int_port = Interrupt

– Write an interrupt handler routine to service the request

– The base address of the peripheral instance can be accessed as

XPAR_INSTANCE_NAME_BASEADDR

MicroBlaze Interrupts

• One INTERRUPT port on the MicroBlaze processor

• MicroBlaze processor functions

– void microblaze_enable_interrupts(void)
• This function enables interrupts on the MicroBlaze processor

• When the MicroBlaze processor starts up, interrupts are disabled. Interrupts

must be explicitly turned on by using this function

– void microblaze_disable_interrupts(void)
• This function disables interrupts on the MicroBlaze processor. This function

may be called when entering a critical section of code where a context switch

is undesirable

Outline
• Introduction

• Software Settings

– Software Platform Settings

– Compiler Settings

• GNU Development Tools: GCC, AS, LD, Binutils

• Development Environments

– XPS

– SDK

• Device Drivers

– Level 0, Level 1

– MicroBlaze Processor: Interrupts

– Integration in EDK

• Libraries

• BSP

– Boot Files and Sequence

Integration in EDK
• When the interrupt generating device is connected to the processor interrupt pin, either

through an interrupt controller or directly, the interrupt handler function must be

developed (You must explicitly write code to set up the interrupt mechanism)

• The interrupt handler must be registered explicitly in code

Registering an

Interrupt Handler

Outline
• Introduction

• Software Settings

– Software Platform Settings

– Compiler Settings

• GNU Development Tools: GCC, AS, LD, Binutils

• Development Environments

– XPS

– SDK

• Device Drivers

– Level 0, Level 1

– MicroBlaze Processor: Interrupts

– Integration in EDK

• Libraries

• BSP

– Boot Files and Sequence

Libraries
• Xilinx provides three libraries

– Math library (libm)

• The math library is an improvement over the newlib math library

• The -lm option is used for libm functions

– Standard C language support (libc)

• The functions of this library are automatically available

– Xilinx C drivers and libraries (libxil)

• Xilinx file support functions: Fatfs

• Xilinx memory file system: Mfs

• Xilinx networking support: lwIp

• Xilinx flash memory support: Flash

Outline
• Introduction

• Software Settings

– Software Platform Settings

– Compiler Settings

• GNU Development Tools: GCC, AS, LD, Binutils

• Development Environments

– XPS

– SDK

• Device Drivers

– Level 0, Level 1

– MicroBlaze Processor: Interrupts

– Integration in EDK

• Libraries

• BSP

– Boot Files and Sequence

What is a BSP?
• Board Support Package (BSP):

– Lowest layer of software modules used to access processor specific
functions
• Interrupt and Exception Handling

• Instruction and Data Cache Handling

• Fast Simplex Link interface macros

• Program Profiling

– Allows you to use IP peripheral-device drivers
• GPIO, IIC controller, PCI controller, UART

– Offers glue functionality to link code against standard libraries
• Time, sleep

• Files

• Memory

– Standalone BSP (no operating system)
• Libgen generates libxil.a library

Hardware IP Device Drivers

• Driver

– Provides an interface for the software to communicate with the

hardware

– Designed to be portable across processor architectures and

operating systems

• Delivery format

– Delivered as source code, allowing it to be built and optimized

– Minimized assembly language

– C programming language

Outline
• Introduction

• Software Settings

– Software Platform Settings

– Compiler Settings

• GNU Development Tools: GCC, AS, LD, Binutils

• Development Environments

– XPS

– SDK

• Device Drivers

– Level 0, Level 1

– MicroBlaze Processor: Interrupts

– Integration in EDK

• Libraries

• BSP

– Boot Files and Sequence

Boot Files
• The compiler includes pre-compiled startup and end files in the final link

command when forming an executable

• Startup Files setup the language and the platform environment before your
application code executes

• The following actions are typically performed
– Setup any reset, interrupt, and exception vectors as required

– Setup stack pointer, small-data anchors, and other registers

– Clear the BSS memory regions to zero

– Invoke language initialization functions, such as c++ constructors

– Initialize the hardware subsystem (ie. initialize profiling timers if the program is to be
profiled)

– Setup arguments for the main procedure and invoke it

– Invoke language cleanup functions, such as c++ destructors

– De-Initialize the hardware sub-system (ie. clean up the profiling subsystem if the
program was profiled)

See Embedded System Tools reference manual for details

First Stage Initialization Files

• crt0.S
– used for programs which are to be executed in standalone
mode, without the use of any boot loader

• crt1.S
– used when the application is debugged in a software-intrusive
manner

• crt2.S
– Used when the executable is loaded using a boot loader

• crt3.S
– Employed when the executable does not use any vectors and
wishes to reduce code size

Second Stage Initialization
Files

• crtinit

– Default second stage C startup file

• pgcrtinit

– Used during profiling

• sim-crtinit

– Used when the –mno-clearbss switch is used in the compiler

• sim-pgcrtinit

– Used during profiling in conjunction with the –mno-clearbss

switch

crt0.s

• Application entry point at label _start

• _start

– Set up any reset, interrupt, and exception vectors as
required

– Transfers control to crtinit (see next slide)

– On returning from _critinit, it ends the program by
infinitely looping in the _exit label

crtinit

• Clear the BSS (.bss and .sbss sections) memory regions
to zero

• Invokes _program_init: language initialization functions,
such as C++ constructors

• Invokes “constructor” functions (_init): Initializes interrupt
handler and the hardware sub-system

• Set up arguments for main() and invokes main()

• Invokes “destructor” functions (_fini)

• Invokes _program_clean and returns

Skills CheckSkills Check

Knowledge Check

• What GNU GCC option is used to specify that debugging

information should be placed in the executable?

• What is included in a BSP?

• What are some of the differences between a Level 0 and a Level 1

driver?

Answers
• What GNU GCC option is used to specify that debugging

information should be placed in the executable?
– -g

• What is included in a BSP?
– IP drivers

– Processor functions

– Library functions

• What are some of the differences between a Level 0 and a Level 1
driver?
– Size

– Functionality

– Ease of use

Knowledge Check

• List libraries supported and their functionality

• How many interrupt pins are present on MicroBlaze?

Answers

• List libraries supported and their functionality

– Fatfs – provides file support functions

– MFS – provides memory file system support functions

– lwip – provides networking support functions including handling of multiple

connections

– Flash – provides read/write/erase types of functions for Intel parallel flash

devices so user can program flash memory during run-time

• How many interrupt pins are present on MicroBlaze?

– One

Where Can I Learn More?
• Tool documentation

– Embedded System Tools Guide → Microprocessor Software
Specifications

– Embedded System Tools Guide → Microprocessor Driver Definition

– Embedded System Tools Guide → Microprocessor Library Definition

– EDK OS and Libraries Reference Guide → LibXil File, Net, and Kernel

– Processor IP Reference Guide

– Xilinx Drivers

• Processor documentation
– MicroBlaze Processor Reference Guide

• Support website
– EDK Website: www.xilinx.com/edk

