
1

Syntax Analysis
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Where is Syntax Analysis Performed?

Lexical Analysis or Scanner

if (b == 0) a = b;

if ( b == 0 ) a = b ;

Syntax Analysis or Parsing

if

== =
b 0 a b

abstract syntax tree
or parse tree
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Parsing Analogy

sentence

subject verb indirect object object

I gave him noun phrase

article noun

bookthe“I gave him the book”

• Syntax analysis for natural languages
• Recognize whether a sentence is grammatically correct
• Identify the function of each word
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Parser

get next token

token

Symbol 
Table

Syntax tree
The Rest 

of Analyzer
Intermediate 

Representation

Place of A Parser in A Compiler
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Syntax Analysis Overview

• Goal – Determine if the input token stream 
satisfies the syntax of the program

• What do we need to do this?
– An expressive way to describe the syntax
– A mechanism that determines if the input token 

stream satisfies the syntax description
• For lexical analysis

– Regular expressions describe tokens
– Finite automata = mechanisms to generate 

tokens from input stream
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Just Use Regular Expressions?

• REs can expressively describe tokens
– Easy to implement via DFAs

• So just use them to describe the syntax of a 
programming language??
– NO! – They don’t have enough power to express any 

non-trivial syntax
– Example – Nested constructs (blocks, expressions, 

statements) – Detect balanced braces:

{{}  {} {{} { }}} { { { { {

}}}} }

. . .- We need unbounded counting!
- FSAs cannot count except in a strictly
  modulo fashion
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Context-Free Grammars
• Consist of 4 components:

– Terminal symbols = token or 
– Non-terminal symbols = syntactic variables
– Start symbol S = special non-terminal
– Productions of the form LHSRHS

• LHS = single non-terminal
• RHS = string of terminals and non-terminals
• Specify how non-terminals may be expanded

• Language generated by a grammar is the set of 
strings of terminals derived from the start symbol 
by repeatedly applying the productions
– L(G) = language generated by grammar G

S   a S a
S   T
T   b T b
T   
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CFG - Example
• Grammar for balanced-parentheses language

– S  ( S ) S
– S  

• 1 non-terminal:  S
• 2 terminals:  “(”, “)”
• Start symbol:  S
• 2 productions

• If grammar accepts a string, there is a derivation of that string 
using the productions
– “(())”
– S => (S)S => (S)  => ((S) S)  =>((S) )  => (()  )  => (())

Why is the final S required?
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More on CFGs
• Shorthand notation – vertical bar for multiple 

productions
– S  a S a | T
– T  b T b | 

• CFGs powerful enough to expression the syntax in 
most programming languages

• Derivation = successive application of productions 
starting from S

• Acceptance? = Determine if there is a derivation for 
an input token stream
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Constructs which Cannot Be Described 
by Context-Free Grammars

• Declarations of identifiers before 
their usage

• Function calls with the proper 
number of arguments
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A Parser

Syntax analyzers (parsers) = CFG acceptors which 
also output the corresponding derivation when the 
token stream is accepted
Various kinds: LL(k), LR(k), SLR, LALR

Parser

Context free
grammar, G

Token stream, s
(from lexer)

Yes, if s in L(G)
No, otherwise

Error messages
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RE is a Subset of CFG

Can inductively build a grammar for each RE
 S  
a S  a
R1 R2 S  S1 S2
R1 | R2 S  S1 | S2
R1* S  S1 S | 

Where
G1 = grammar for R1, with start symbol S1
G2 = grammar for R2, with start symbol S2
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Grammar for Sum Expression
• Grammar

– S  E + S | E
– E  number | (S)

• Expanded
– S  E + S
– S  E
– E  number
– E  (S)

4 productions
2 non-terminals (S,E)
4 terminals: “(“, “)”, “+”, number
start symbol: S
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Constructing a Derivation
• Start from S (the start symbol)
• Use productions to derive a sequence of 

tokens
• For arbitrary strings α, β, γ and for a 

production: A  β
– A single step of the derivation is
– α A γ => α β γ     (substitute β for A)

• Example
– S  E + S
– (S + E) + E => (E + S + E) + E
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Class Problem
– S  E + S | E
– E  number | (S)

• Derive: (1 + 2 + (3 + 4)) + 5
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Parse Tree
S

E + S

(  S  ) E

E  +  S 5

E  +  S1

2 E

(  S  )

E  +  S
E3

4

• Parse tree = tree representation of the 
derivation

• Leaves of the tree are terminals
• Internal nodes are non-terminals
• No information about the order of the 

derivation steps
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Parse Tree vs Abstract Syntax Tree
S

E + S

(  S  ) E

E  +  S 5

E  +  S1

2 E

(  S  )

E  +  S
E3 4

+

+

+

+

1

2

3 4

5

Parse tree also called “concrete syntax”

AST discards (abstracts) unneeded
information – more compact format
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Derivation Order
• Can choose to apply productions in any order, 

select non-terminal and substitute RHS of 
production

• Two standard orders: left and right-most
• Leftmost derivation

– In the string, find the leftmost non-terminal and apply a 
production to it

– E + S => 1 + S
• Rightmost derivation

– Same, but find rightmost non-terminal
– E + S => E + E + S

lm

rm
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Leftmost Derivation Example

lm lm lm lm lm

E  E + E | E * E | ( E ) | -E | id
E => -E => -(E) => -(E+E) => - (id+E) => -(id+id)

E
E

E-


E

E-

( )E


E

E-

( )E

E E+


E

E-

( )E

E E+

id


E

E-

( )E

E E+

id id
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Leftmost/Rightmost Derivation Examples

S => E + S => (S)+S => (E+S) + S => (1+S)+S => (1+E+S)+S =>
(1+2+S)+S => (1+2+E)+S => (1+2+(S))+S => (1+2+(E+S))+S =>
(1+2+(3+S))+S => (1+2+(3+E))+S => (1+2+(3+4))+S =>
(1+2+(3+4))+E => (1+2+(3+4))+5 

S => E+S => E+E => E+5 => (S)+5 => (E+S)+5 => (E+E+S)+5 =>
(E+E+E)+5 => (E+E+(S))+5 => (E+E+(E+S))+5 =>
(E+E+(E+E))+5 => (E+E+(E+4))+5 => (E+E+(3+4))+5 =>
(E+2+(3+4))+5 => (1+2+(3+4))+5

• S  E + S | E
• E  number | (S)
• Leftmost derive: (1 + 2 + (3 + 4)) + 5

•Now, rightmost derive the same input string

Result: Same parse tree: same productions chosen, but in different order
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Class Problem
– S  E + S | E
– E  number | (S) | -S

• Do the rightmost derivation of : 1 + (2 + -(3 + 4)) + 5
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Ambiguous Grammars
• In the sum expression grammar, leftmost and 

rightmost derivations produced identical parse 
trees

• + operator associates to the right in parse tree 
regardless of derivation order

(1+2+(3+4))+5

+

+

+

+

1

2

3 4

5
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Ambiguous Grammars
• + associates to the right because of the right-recursive 

production: S  E + S
• Consider another grammar

– S  S + S | S * S | number
• Ambiguous grammar = different derivations 

produce different parse trees
– More specifically, G is ambiguous if there are 2 

distinct leftmost (rightmost) derivations for some 
sentence
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Ambiguous Grammar - Example
S  S + S | S * S | number

Consider the expression:  1 + 2 * 3

Derivation 1: S => S+S =>
1+S => 1+S*S => 1+2*S => 1+2*3 

Derivation 2: S => S*S =>
S+S*S => 1+S*S => 1+2*S => 1+2*3

+
*1

2 3

*
+

1 2

3

But, obviously not equal!

2 leftmost derivations
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Impact of Ambiguity

• Different parse trees correspond to different 
evaluations!

• Thus, program meaning is not defined!!

+
*1

2 3

*
+

1 2

3

 = 7  = 9
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Can We Get Rid of Ambiguity?
• Ambiguity is a function of the grammar, not the 

language!
• A context-free language L is inherently ambiguous 

if all grammars for L are ambiguous
• Every deterministic CFL has an unambiguous 

grammar
– So, no deterministic CFL is inherently ambiguous
– No inherently ambiguous programming languages have 

been invented
• To construct a useful parser, must devise an 

unambiguous grammar
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Eliminating Ambiguity
• Often can eliminate ambiguity by adding 

nonterminals and allowing recursion only on right or 
left
– S  S + T | T
– T  T * num | num

– T non-terminal enforces precedence
– Left-recursion; left associativity

S

S   +   T

T T   *   3

1 2
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A Closer Look at Eliminating Ambiguity
• Precedence enforced by

– Introduce distinct non-terminals for each 
precedence level

– Operators for a given precedence level are 
specified as RHS for the production

– Higher precedence operators are accessed by 
referencing the next-higher precedence non-
terminal 
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Associativity
• An operator is either left, right or non associative

– Left: a + b + c = (a + b) + c
– Right: a ^ b ^ c = a ^ (b ^ c)
– Non: a < b < c is illegal (thus undefined)

• Position of the recursion relative to the 
operator dictates the associativity
– Left (right) recursion  left (right) associativity
– Non: Don’t be recursive, simply reference next 

higher precedence non-terminal on both sides of 
operator
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Class Problem
S  S + S | S – S | S * S | S / S | (S) | -S | S ^ S | num 

Enforce the standard arithmetic precedence rules and remove 
all ambiguity from the above grammar

Precedence (high to low)
(),  unary –
^
*, /
+, -
Associativity
^ = right
rest are left
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stmt  if expr then stmt
| if expr then stmt else stmt
| other

“Dangling Else” Problem

stmt

if expr then stmt

expr then stmt else stmt
E1

E2 S1 S2

if

stmt

expr then stmt else stmt
E1 S2

if

if expr then stmt
E2 S1

if E1 then if E2 then S1 else S2
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stmt  matched_stmt
| unmatched_stmt

matched_stmt  if expr then matched_stmt else matched_stmt 
| other

unmatched_stmt  if expr then stmt
| if expr then matched_stmt else unmatched_stmt

Grammar for Closest-if Rule

• Want to rule out: if (E) if (E) S else S
• Impose that unmatched “if” statements occur 

only on the “else” clauses
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Parsing Top-Down
Goal: construct a leftmost derivation of string while reading in
sequential token stream

Partly-derived String Lookahead parsed part unparsed part
E + S ( (1+2+(3+4))+5
(S) + S 1 (1+2+(3+4))+5
(E+S)+S 1 (1+2+(3+4))+5
(1+S)+S 2 (1+2+(3+4))+5
(1+E+S)+S 2 (1+2+(3+4))+5
(1+2+S)+S 2 (1+2+(3+4))+5
(1+2+E)+S ( (1+2+(3+4))+5
(1+2+(S))+S 3 (1+2+(3+4))+5
(1+2+(E+S))+S 3 (1+2+(3+4))+5
 ...

S  E + S | E
E  num | (S)
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Problem with Top-Down Parsing
Want to decide which production to apply based 
on next symbol

Ex1: “(1)” S => E => (S) => (E) => (1)
Ex2: “(1)+2” S => E+S => (S)+S => (E)+S => (1)+E => (1)+2

S  E + S | E
E  num | (S)

How did you know to pick E+S in Ex2, if you picked
E followed by (S), you couldn’t parse it?
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Grammar is Problem

• This grammar cannot be parsed top-down 
with only a single look-ahead symbol!

• Not LL(1) = Left-to-right scanning, Left-most 
derivation, 1 look-ahead symbol

• Is it LL(k) for some k?
• If yes, then can rewrite grammar to allow top-

down parsing: create LL(1) grammar for 
same language

S  E + S | E
E  num | (S)
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Making a Grammar LL(1)

• Problem: Can’t decide which 
S production to apply until we 
see the symbol after the first 
expression

• Left-factoring: Factor 
common S prefix, add new 
non-terminal S’ at decision 
point.  S’ derives (+S)*

• Also: Convert left recursion to 
right recursion

S  E + S
S  E
E  num
E  (S)

S  ES’
S’  
S’  +S
E  num
E  (S)
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Parsing with New Grammar

Partly-derived String Lookahead parsed part unparsed part
ES’ ( (1+2+(3+4))+5
(S)S’ 1 (1+2+(3+4))+5
(ES’)S’ 1 (1+2+(3+4))+5
(1S’)S’ + (1+2+(3+4))+5
(1+ES’)S’ 2 (1+2+(3+4))+5
(1+2S’)S’ + (1+2+(3+4))+5
(1+2+S)S’ ( (1+2+(3+4))+5
(1+2+ES’)S’ ( (1+2+(3+4))+5
(1+2+(S)S’)S’ 3 (1+2+(3+4))+5
(1+2+(ES’)S’)S’ 3 (1+2+(3+4))+5
(1+2+(3S’)S’)S’ + (1+2+(3+4))+5
(1+2+(3+E)S’)S’ 4 (1+2+(3+4))+5
 ...

S  ES’ S’   | +S E  num | (S)
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Predictive Parsing

• LL(1) grammar:
– For a given non-terminal, the lookahead symbol 

uniquely determines the production to apply
– Top-down parsing = predictive parsing
– Driven by predictive parsing table of

• non-terminals x terminals  productions
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Adaptation for Predictive Parsing
• Elimination of left recursion
expr expr + term | term 

A  A | 

A  R
R  R | 

• Left factoring
stmt  if expr then stmt

| if expr then stmt else stmt

A   1 |  2

A   A'
A'  1 | 2
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E  E + T | T
T  T * F | F
F  ( E ) | id

E  TE'
E'  +TE' |  
T  FT'
T'  *FT' |  
F  ( E ) | id

Transformation for Arithmetic 
Expression Grammar
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a + b $

X
Y
Z
$

Predictive Parser
 Program

Parser
Table

M

Output

1. If X=a=$ stop and announce success
2. If X=a<>$ pop X off the stack and advance the input

pointer
3. If X is a nonterminal, use production from M[X,a]

Predictive Parser without Recursion



42

The M Table for Arithmetic Expressions

Nonterminal Input Symbol
Id + * ( ) $

E
E’
T
T’
F

E ® TE’ E® TE’
E’® +TE’ E’®Î E’®Î

T ® FT’ T ® FT’
T’ ®Î T’ ® *FT’ T’®Î T’®Î 

F ® id F ® (E)
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Class Problem

• Parse the string
– id + id * id
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Constructing Parse Tables
• Can construct predictive parser if:

– For every non-terminal, every lookahead symbol can be 
handled by at most 1 production

• FIRST() for an arbitrary string of terminals and 
non-terminals  is:
– Set of symbols that might begin the fully expanded 

version of 
• FOLLOW(X) for a non-terminal X is:

– Set of symbols that might follow the derivation of X in the 
input stream

FIRST FOLLOW

X
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1. If X is a terminal, FIRST(X) = {X}

2. If X    is a production,
add  to FIRST(X)

3. If X is nonterminal and X  Y1Y2…Yk is a production, 
place a in FIRST(X) if for some i, a is in FIRST(Yi) 
and  is in FIRST(Y1), … , FIRST(Yi-1). 
If  is in FIRST(Yj) for every j, add  to FIRST(X).

Computation of FIRST(X)
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Computation of FOLLOW(X)

1. Place $ in FOLLOW(S), where S is the start 
symbol

2. If there is a production
A  B,  
everything in FIRST() except for  is placed in 
FOLLOW(B)

3. If there is a production A  B
or a production A  B where FIRST() 
contains , place all elements from FOLLOW(A) 
in FOLLOW(B)
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Construction of Parsing Table M

1. For every production A   do steps 2 and 3

2. For each terminal a in FIRST() add A   to M[A,a]

3. If FIRST() contains , place A   in 
M[A,b] for each b in FOLLOW(A)

Grammar is LL(1), if no conflicting entries
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Error Handling
Types of errors
• Lexical
• Syntactic
• Semantic
• Logical

Error handler in a parser
• Should report the presence of errors 

clearly and accurately
• Should recover from each error quickly 

enough to be able to detect subsequent 
errors

• Should not significantly slow down the 
processing of correct programs
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program prmax(input,output);
var

x,y: integer;
function max(i:integer; j:integer): integer;
begin

if I > j then max:=i
else max :=j

end;

begin
readln (x,y);
writeln(max(x,y))

end.

Typical Errors in A Pascal Program
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Error Handling Strategies

● Panic mode – skip tokens until a 
synchronizing token is found

● Phrase level – local error correction
● Error productions
● Global correction
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Predictive Parser – Error Recovery

• Synchronizing tokens
– FOLLOW(A) 
– Keywords
– FIRST(A)
– Empty production (if exists) as default in case of 

error
– Insertion of token from the top of the stack

• Local error correction
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Table M with Synchronizing Tokens

Nonterminal Input symbol
Id + * ( ) $

E synch synch
E’
T synch synch synch
T’
F synch synch synch synch

E ® TE’ E® TE’
E’® +TE’ E’®Î E’®Î

T ® FT’ T ® FT’
T’ ®Î T’ ® *FT’ T’®Î T’®Î 

F ® id F ® (E)

• If M[A,a] blank - skip input symbol a
• If M[A,a] contains synch - pop nonterminal 

from the stack
• If the token at the top of stack does not 

match the input - pop terminal from the stack
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Class Problem

• Parse the string
– id*+id
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Bottom-Up Parsing

• A more power parsing technology
• LR grammars – more expressive than LL

– Construct right-most derivation of program
– Left-recursive grammars, virtually all 

programming languages are left-recursive
– Easier to express syntax

• Shift-reduce parsers
– Parsers for LR grammars
– Automatic parser generators (yacc, bison)
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Bottom-Up Parsing

• Right-most derivation – Backward
– Start with the tokens
– End with the start symbol
– Match substring on RHS of production, replace 

by LHS

(1+2+(3+4))+5 <= (E+2+(3+4))+5 <= (S+2+(3+4))+5 <= (S+E+(3+4))+5 
<= (S+(3+4))+5 <= (S+(E+4))+5 <= (S+(S+4))+5 <= (S+(S+E))+5 <= 
(S+(S))+5 <= (S+E)+5 <= (S)+5 <= E+5 <= S+5 <= S+E <= S

S  S + E | E
E  num | (S)
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Bottom-Up Parsing

(1+2+(3+4))+5
 <= (E+2+(3+4))+5 
<= (S+2+(3+4))+5 
<= (S+E+(3+4))+5

Advantage of bottom-up parsing:
can postpone the selection of
productions until more of the
input is scanned

S

S + E

(  S  )

S  +  E

5
E

S  +  E

2E
1

(  S  )

S  +  E
4E

3

S  S + E | E
E  num | (S)



57

Top-Down Parsing
S  S + E | E
E  num | (S)

In left-most derivation, entire
tree above token (2) has been
expanded when encountered

S

S + E

(  S  )

S  +  E

5E

S  +  E
2E

1

(  S  )

S  +  E
4E

3

S => S+E => E+E => 
(S)+E => (S+E)+E=> 
(S+E+E)+E => 
(E+E+E)+E=> (1+E+E)
+E => (1+2+E)+E ...
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Top-Down vs Bottom-Up

• Bottom-up: Don’t need to figure out as much of the 
parse tree for a given amount of input  More time 
to decide what rules to apply

scanned unscanned scanned unscanned

Top-down Bottom-up
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Terminology: LL vs LR
• LL(k)

– Left-to-right scan of input
– Left-most derivation
– k symbol lookahead
– [Top-down or predictive] parsing or LL parser
– Performs pre-order traversal of parse tree

• LR(k)
– Left-to-right scan of input
– Right-most derivation
– k symbol lookahead
– [Bottom-up or shift-reduce] parsing or LR parser
– Performs post-order traversal of parse tree
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E  E + E | E * E | ( E ) | id
E  E + E

 E + E * E
 E + E * id3

 E + id2 * id3

 id1 + id2 * id3

Handles

E  E * E
 E * id3

 E + E * id3

 E + id2 * id3

 id1 + id2 * id3

• Handle of a string is a substring that matches the 
right side of a production, and whose reduction to 
the nonterminal on the left size of the production 
represents one step along the reverse of a 
rightmost derivation
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Handles

Right-Sentential Form Handle Reducing Production

E + E
E

id1+ id2 * id3 id1 E® id
E + id2* id3 id2 E® id
E + E * id3 id3 E® id
E + E * E E *  E E® E * E

E + E E® E + E
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Shift-Reduce Parsing

Stack Input Operation
$ Shift

Shift
Shift

Shift
Shift

$
$
$
$Accept

id1 + id2 * id3$
$id1 + id2 * id3$Reduce by E ® id
$E + id2 * id3$
$E + id2 * id3$
$E + id2 * id3$Reduce by E®  id
$E + E * id3$
$E + E * id3$
$E + E *  id3 Reduce by E ® id
$E + E * E Reduce by E ®E * E
$E + E Reduce by E ®E + E
$E

– Parsing is a sequence of shifts and reduces
– Shift: move look-ahead token to stack
– Reduce: Replace symbols  from top of stack with non-terminal symbol X 

corresponding to the production: X  (e.g., pop , push X)
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Potential Problems

– How do we know which action to take:  whether 
to shift or reduce, and which production to apply

– Issues
• Sometimes can reduce but should not
• Sometimes can reduce in different ways
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Action Selection Problem

– Given stack  and look-ahead symbol b, should 
parser:
• Shift b onto the stack making it b ?
• Reduce X   assuming that the stack has the form 
 =  making it X ?

– If stack has the form , should apply reduction X   
(or shift) depending on stack prefix 
•  is different for different possible reductions since 
’s have different lengths
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Shift/Reduce and Reduce/Reduce Conflicts

stmt  if expr then stmt
| if expr then stmt else stmt
| other

… if expr then stmt else … $

...
stmt  id ( parameter_list )
...
expr  id ( expr_list )
...
… id ( id                         , id  ) … $
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yacc / bison – Parser Generators
%{
#include <ctype.h>
%}

%token DIGIT

%%
line: expr '\n' { printf("%d\n", $1); }

;
expr: expr '+' term { $$ = $1 + $3; }

| term
;

term: term '*' factor { $$ = $1 * $3; }
| factor
;

factor : '(' expr ')' { $$ = $2; }
| DIGIT
;

%%
int yylex() {

int c;
c = getchar();
if (isdigit(c)) {
  yylval = c - '0';
  return DIGIT;
}
return c;

}
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%{
#include <ctype.h>
#include <stdio.h>
#define YYSTYPE double
%}
%token NUMBER
%left '+' '-'
%left '*' '/'
%right UMINUS
%%
lines: lines expr '\n' { printf("%g\n", $2); }

| lines '\n'
| /* empty */
;

expr : expr '+' expr { $$ = $1 + $3; }
| expr '-' expr { $$ = $1 - $3; }
| expr '*' expr { $$ = $1 * $3; }
| expr '/' expr { $$ = $1 / $3; }
| '(' expr ')' { $$ = $2; }
| '-' expr %prec UMINUS { $$ = -$2; }
| NUMBER
;

%%
yylex() {

int c;
while ( ( c = getchar() ) == ' ');
if ( c == '.' || isdigit(c)) ) {

ungetc(c, stdin);
scanf("%lf",&yylval);
return NUMBER;

}
return c;

}

Operator Precedence in bison
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yacc / bison – Conflict Resolution
1. Reduce/reduce – first production listed in the input file 

selected
2. Shift/reduce – shift performed

Terminals can be assigned with precedence and associativity 
in declarative part of the input file.
Precedence of a production is usually the precedence of 
rightmost terminal. Can be overriden.

For the conflict: reduce A   and shift a

reduce – if precedence of production greater than precedence 
of a or they are equal and associativity of the production is left
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%{
#include <ctype.h>
#include <stdio.h>
#define YYSTYPE double
%}

%token NUMBER
%left '+' '-'
%left '*' '/'
%right UMINUS
%%
lines: lines expr '\n' { printf("%g\n", $2); }

| lines '\n'
| /* empty */
| error '\n' { yyerror("reenter last line:"); yyerrok; }
;

expr: expr '+' expr { $$ = $1 + $3; }
| expr '-' expr { $$ = $1 - $3; }
| expr '*' expr { $$ = $1 * $3; }
| expr '/' expr { $$ = $1 / $3; }
| '(' expr ')' { $$ = $2; }
| '-' expr %prec UMINUS { $$ = -$2; }
| NUMBER
;

%%

Error Handling
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LR Parsing Engine

• Basic mechanism
– Use a set of parser states
– Use stack with alternating symbols and states

• E.g., 1 ( 6 S 10 + 5 (blue = state numbers)
– Use parsing table to:

• Determine what action to apply (shift/reduce)
• Determine next state

• The parser actions can be precisely 
determined from the table
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LR Parsing Table

• Algorithm: look at entry for current state S and input 
terminal C
– If Action[S,C] = s(S’) then shift:

• push(C), push(S’)
– If Action[S,C] = X  then reduce:

• pop(2*||), S’= top(), push(X), push(Goto[S’,X])

Next action
and next state Next state

Terminals Non-terminals

State

Action table Goto table
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LR Parsing Table Example

( ) id , $ S L
1 s3 s2 g4
2 Sid Sid Sid Sid Sid
3 s3 s2 g7 g5
4 accept
5 s6 s8
6 S(L) S(L) S(L) S(L) S(L)
7 LS LS LS LS LS
8 s3 s2 g9
9 LL,S LL,S LL,S LL,S LL,S

St
at

e

Action Goto

We want to derive this in an algorithmic fashion
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Parsing Example ((a),b)
S  (L) | id
L  S | L,S

derivation stack input action
((a),b)<= 1 ((a),b) shift, goto 3
((a),b)<= 1(3 (a),b) shift, goto 3
((a),b)<= 1(3(3 a),b) shift, goto 2
((a),b)<= 1(3(3a2 ),b) reduce Sid
((S),b)<= 1(3(3(S7 ),b) reduce LS
((L),b)<= 1(3(3(L5 ),b) shift, goto 6
((L),b)<= 1(3(3L5)6 ,b) reduce S(L)
(S,b)<= 1(3S7 ,b) reduce LS
(L,b)<= 1(3L5 ,b) shift, goto 8
(L,b)<= 1(3L5,8 b) shift, goto 2
(L,b)<= 1(3L5,8b2 ) reduce Sid
(L,S)<= 1(3L8,S9 ) reduce LL,S
(L)<= 1(3L5 ) shift, goto 6
(L)<= 1(3L5)6 $ reduce S(L)
S 1S4 $ done
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LR(k) Grammars

• LR(k) = Left-to-right scanning, right-most 
derivation, k lookahead chars

• Main cases
– LR(0), LR(1)
– Some variations SLR and LALR(1)

• Parsers for LR(0) Grammars:
– Determine the actions without any lookahead
– Will help us understand shift-reduce parsing
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Building LR(0) Parsing Tables
• To build the parsing table:

– Define states of the parser
– Build a DFA to describe transitions between states
– Use the DFA to build the parsing table

• Each LR(0) state is a set of LR(0) items
– An LR(0) item: X   .  where X   is a production 

in the grammar
– The LR(0) items keep track of the progress on all of the 

possible upcoming productions
– The item X   .  abstracts the fact that the parser 

already matched the string  at the top of the stack
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Example LR(0) State
• An LR(0) item is a production from the language 

with a separator “.” somewhere in the RHS of the 
production

• Sub-string before “.” is already on the stack 
(beginnings of possible ’s to be reduced)

• Sub-string after “.”: what we might see next

E  num .
E  ( . S)

state
item
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Class Problem

•For the production,
•E  num | (S)

•Two items are:
•E  num .
•E  ( . S )

•Are there any others?
• If so, what are they?
• If not, why?
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LR(0) Grammar
• Nested lists

– S  (L) | id
– L  S | L,S

• Examples
– (a,b,c)
– ((a,b), (c,d), (e,f))
– (a, (b,c,d), ((f,g)))

S

(  L  )

L  ,  S

L  ,  S

(  S  )S
a L  ,  S

S
b

c

d

Parse tree for
(a, (b,c), d)
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Start State and Closure

• Start state
– Augment grammar with production: S’  S $
– Start state of DFA has empty stack: S’  . S $

• Closure of a parser state:
– Start with Closure(S) = S
– Then for each item in S:

• X   . Y 
• Add items for all the productions Y   to the closure 

of S:  Y  . 
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Closure Example

S  (L) | id
L  S | L,S

DFA start state
S’  . S $

closure
S’  . S $
S  . (L)
S  . id

- Set of possible productions to be reduced next
- Added items have the “.” located at the beginning:
  no symbols for these items on the stack yet
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The Goto Operation

• Goto operation = describes transitions 
between parser states, which are sets of 
items

• Algorithm: for state S and a symbol Y
– If the item [X   . Y ] is in S, then
– Goto(S, Y) =  Closure( [X   Y .  ] )

S’  . S $
S  . (L)
S  . id

Goto(S, ‘(‘) Closure( [ S  ( . L) ] )
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Class Problem

•If I = { [E’  . E]}, then Closure(I) = ??
•If I = { [E’  E . ], [E  E . + T] }, then Goto(I,+) = ??

E’  E
E  E + T | T
T  T * F | F
F  (E) | id



83

Goto: Terminal Symbols

S’  . S $
S  . (L)
S  . id

S  ( . L)
L  . S
L  . L, S
S  . (L)
S  . id

S  id .
id

(

id (

Grammar
S  (L) | id
L  S | L,S

In new state, include all items that have appropriate input symbol
just after dot, advance dot in those items and take closure



84

Applying Reduce Actions

S’  . S $
S  . (L)
S  . id

S  ( . L)
L  . S
L  . L, S
S  . (L)
S  . id

S  id .
id

(

id (
Grammar
S  (L) | id
L  S | L,S

S  (L . )
L  L . , S

L  S .

L

S

states causing reductions
(dot has reached the end!)

Pop RHS off stack, replace with LHS X (X  ),
then rerun DFA
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Reductions

• On reducing X   with stack 
– Pop  off stack, revealing prefix  and state
– Take single step in DFA from top state
– Push X onto stack with new DFA state

• Example

derivation stack input action
((a),b) <= 1 ( 3 ( 3 a),b) shift, goto 2
((a),b) <= 1 ( 3 ( 3 a 2 ),b) reduce S  id
((S),b) <= 1 ( 3 ( 3 S 7 ),b) reduce L  S
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Full DFA

S’  . S $
S  . (L)
S  . id

S  ( . L)
L  . S
L  . L, S
S  . (L)
S  . id

S  id .id

(

id

(

S  (L . )L
L  L . , S

L  S .

S

L  L , . S
S  . (L)
S  . id

L  L,S .

S  (L) .
S’  S . $

final state

1 2 8 9

6

5

3

74

S

,

)
S

$

id

L

Grammar
S  (L) | id
L  S | L,S

(
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Building the Parsing Table

• States in the table = states in the DFA
• For transition S  S’ on terminal C:

– Action[S,C] += Shift(S’)
• For transition S  S’ on non-terminal N:

– Goto[S,N] += Goto(S’)
• If S is a reduction state X   then:

– Action[S,*] += Reduce(X  )
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LR(0) Summary

• LR(0) parsing recipe:
– Start with LR(0) grammar
– Compute LR(0) states and build DFA:

• Use the closure operation to compute states
• Use the goto operation to compute transitions

– Build the LR(0) parsing table from the DFA
• This can be done automatically



89

Class Problem

•Generate the DFA for the following grammar
•S  E + S | E
•E  num
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LR(0) Limitations
• An LR(0) machine only works if states with reduce 

actions have a single reduce action
– Always reduce regardless of lookahead

• With a more complex grammar, construction gives 
states with shift/reduce or reduce/reduce conflicts

• Need to use lookahead to choose

L  L , S .
L  L , S .
S  S . , L

L  S , L .
L  S .

OK shift/reduce reduce/reduce



91

A Non-LR(0) Grammar
• Grammar for addition of numbers

– S  S + E | E
– E  num

• Left-associative version is LR(0)
• Right-associative is not LR(0) as you saw 

with the previous class problem
– S  E + S | E
– E  num
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LR(0) Parsing Table

S’  . S $
S  .E + S
S  . E
E  .num E  num .

S  E . +S
S  E .

E

num

+

S  E + S .
S’  S $ .

S

S  E + . S
S  . E + S
S  . E
E  . num

S’  S . $

1 2

5

3

7

4
S

Grammar
S  E + S | E
E  num

$

E
num

num      + $ E S
1    s4 g2 g6
2    SE s3/SE      SE

Shift or
reduce
in state 2?

6
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Solve Conflict With Lookahead

• 3 popular techniques for employing 
lookahead of 1 symbol with bottom-up 
parsing
– SLR – Simple LR
– LALR – LookAhead LR
– LR(1)

• Each as a different means of utilizing the 
lookahead
– Results in different processing capabilities
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SLR Parsing
• SLR Parsing = Easy extension of LR(0)

– For each reduction X  , look at next symbol C
– Apply reduction only if C is in FOLLOW(X)

• SLR parsing table eliminates some conflicts
– Same as LR(0) table except reduction rows
– Adds reductions X   only in the columns of 

symbols in FOLLOW(X)

num + $ E S
1   s4 g2 g6
2   s3 SE

Example:  FOLLOW(S) = {$}

Grammar
S  E + S | E
E  num
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SLR Parsing Table

• Reductions do not fill entire rows as before
• Otherwise, same as LR(0)

num + $ E S
1   s4 g2 g6
2   s3 SE
3   s4 g2 g5
4   Enum Enum
5                 SE+S
6     s7
7     accept

Grammar
S  E + S | E
E  num
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Class Problem

•Consider:
•S  L = R
•S  R
•L  *R
•L  ident
•R  L

Think of L as l-value, R as r-value, and
* as a pointer dereference

When you create the states in the SLR(1) DFA,
2 of the states are the following:

S  L . = R
R  L . S  R .

Do you have any shift/reduce conflicts?
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LR(1) Parsing
• Get as much as possible out of 1 lookahead 

symbol parsing table
• LR(1) grammar = recognizable by a shift/reduce 

parser with 1 lookahead
• LR(1) parsing uses similar concepts as LR(0)

– Parser states = set of items
– LR(1) item = LR(0) item + lookahead symbol possibly 

following production
• LR(0) item: S  . S + E
• LR(1) item: S  . S + E , +
• Lookahead only has impact upon REDUCE 

operations, apply when lookahead = next input
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LR(1) States
• LR(1) state = set of LR(1) items
• LR(1) item = (X   .  , y)

– Meaning:  already matched at top of the stack, next 
expect to see  y

• Shorthand notation
– (X   .  , {x1, ..., xn})
– means:

• (X   .  , x1)
• . . . 
• (X   .  , xn)

• Need to extend closure and goto operations

S  S . + E +,$
S  S + . E num
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LR(1) Closure
• LR(1) closure operation:

– Start with Closure(S) = S
– For each item in S:

• X   . Y  , z
• and for each production Y   , add the following item to the 

closure of S:  Y  .  , FIRST(z)
– Repeat until nothing changes

• Similar to LR(0) closure, but also keeps track of 
lookahead symbol
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LR(1) Start State
• Initial state: start with (S’  . S , $), then apply 

closure operation
• Example: sum grammar

S’  . S , $
S’  . S , $
S  . E + S , $
S  . E , $
E  . num , +,$

closure

S’  S $
S  E + S | E
E  num
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LR(1) Goto Operation
• LR(1) goto operation = describes transitions 

between LR(1) states
• Algorithm: for a state S and a symbol Y (as before)

– If the item [X   . Y ] is in S, then
– Goto(S, Y) =  Closure( [X   Y .  ] )

S  E . + S , $
S  E . , $ Closure({S  E + . S , $})

Goto(S1, ‘+’)S1 S2

Grammar:
S’  S$
S  E + S | E
E  num
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Class Problem

1. Compute: Closure(I = {S  E + . S , $})
2. Compute: Goto(I, num)
3. Compute: Goto(I, E)

S’  S $
S  E + S | E
E  num
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LR(1) DFA Construction

S’  . S , $
S  . E + S , $
S  . E , $
E  .num , +,$

E  num . , +,$

S’  S . , $

E

num

+

S  E+S. , $

S

S  E + . S , $
S  . E + S , $
S  . E , $
E  . num , +,$

S  E . + S , $
S  E . , $

S

Grammar
S’  S$
S  E + S | E
E  numE

num
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LR(1) Reductions

S’  . S , $
S  . E + S , $
S  . E , $
E  .num , +,$

E  num . , +,$

S’  S . , $

E

num

+

S  E+S. , $

S

S  E + . S , $
S  . E + S , $
S  . E , $
E  . num , +,$

S  E . + S , $
S  E . , $

S

Grammar
S’  S$
S  E + S | E
E  numE

num

•Reductions correspond to LR(1) items of the form (X   . , y)
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LR(1) Parsing Table Construction

• Same as construction of LR(0), except for 
reductions

• For a transition S  S’ on terminal x:
– Table[S,x] += Shift(S’)

• For a transition S  S’ on non-terminal N:
– Table[S,N] += Goto(S’)

• If  I contains {(X   . , y)} then:
– Table[I,y] += Reduce(X  )
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LR(1) Parsing Table Example

S’  . S , $
S  . E + S , $
S  . E , $
E  .num , +,$

E
+

S  E + . S , $
S  . E + S , $
S  . E , $
E  . num , +,$

S  E . + S , $
S  E . , $

Grammar
S’  S$
S  E + S | E
E  num

1

2

3

+ $ E
1 g2
2 s3 SE

Fragment of the
parsing table
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Class Problem
●Compute the LR(1) DFA for the following 
grammar

•E  E + T | T
•T  TF | F
•F  F* | a | b
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LALR(1) Grammars
• Problem with LR(1): too many states
• LALR(1) parsing (aka LookAhead LR)

– Constructs LR(1) DFA and then merge any 2 LR(1) 
states whose items are identical except lookahead

– Results in smaller parser tables
– Theoretically less powerful than LR(1)

• LALR(1) grammar = a grammar whose LALR(1) 
parsing table has no conflicts

S  id . , +
S  E . , $

S  id . , $
S  E . , ++ = ??
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LALR Parsers

• LALR(1)
– Generally same number of states as SLR (much 

less than LR(1))
– But, with same lookahead capability of LR(1) 

(much better than SLR)
– Example:  Pascal programming language

• In SLR, several hundred states
• In LR(1), several thousand states
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LL/LR Grammar Summary
• LL parsing tables

– Non-terminals x terminals  productions
– Computed using FIRST/FOLLOW

• LR parsing tables
– LR states x terminals  {shift/reduce}
– LR states x non-terminals  goto
– Computed using closure/goto operations on LR states

• A grammar is:
– LL(1) if its LL(1) parsing table has no conflicts
– same for LR(0), SLR, LALR(1), LR(1)
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Classification of Grammars

LR(0)
SLR

LALR(1)
LR(1)

LL(1)

LR(k)  LR(k+1)
LL(k)  LL(k+1)

LL(k)  LR(k)
LR(0)  SLR
LALR(1)  LR(1)

not to scale 
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Automate the Parsing Process
• Can automate:

– The construction of LR parsing tables
– The construction of shift-reduce parsers based on these 

parsing tables
• LALR(1) parser generators

– yacc, bison
– Not much difference compared to LR(1) in practice
– Smaller parsing tables than LR(1)
– Augment LALR(1) grammar specification with 

declarations of precedence, associativity
– Output: LALR(1) parser program
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