
1

Syntax Analysis

2

Where is Syntax Analysis Performed?

Lexical Analysis or Scanner

if (b == 0) a = b;

if (b == 0) a = b ;

Syntax Analysis or Parsing

if

== =
b 0 a b

abstract syntax tree
or parse tree

3

Parsing Analogy

sentence

subject verb indirect object object

I gave him noun phrase

article noun

bookthe“I gave him the book”

• Syntax analysis for natural languages
• Recognize whether a sentence is grammatically correct
• Identify the function of each word

4

Parser

get next token

token

Symbol
Table

Syntax tree
The Rest

of Analyzer
Intermediate

Representation

Place of A Parser in A Compiler

5

Syntax Analysis Overview

• Goal – Determine if the input token stream
satisfies the syntax of the program

• What do we need to do this?
– An expressive way to describe the syntax
– A mechanism that determines if the input token

stream satisfies the syntax description
• For lexical analysis

– Regular expressions describe tokens
– Finite automata = mechanisms to generate

tokens from input stream

6

Just Use Regular Expressions?

• REs can expressively describe tokens
– Easy to implement via DFAs

• So just use them to describe the syntax of a
programming language??
– NO! – They don’t have enough power to express any

non-trivial syntax
– Example – Nested constructs (blocks, expressions,

statements) – Detect balanced braces:

{{} {} {{} { }}} { { { { {

}}}} }

. . .- We need unbounded counting!
- FSAs cannot count except in a strictly
 modulo fashion

7

Context-Free Grammars
• Consist of 4 components:

– Terminal symbols = token or 
– Non-terminal symbols = syntactic variables
– Start symbol S = special non-terminal
– Productions of the form LHSRHS

• LHS = single non-terminal
• RHS = string of terminals and non-terminals
• Specify how non-terminals may be expanded

• Language generated by a grammar is the set of
strings of terminals derived from the start symbol
by repeatedly applying the productions
– L(G) = language generated by grammar G

S  a S a
S  T
T  b T b
T  

8

CFG - Example
• Grammar for balanced-parentheses language

– S  (S) S
– S  

• 1 non-terminal: S
• 2 terminals: “(”, “)”
• Start symbol: S
• 2 productions

• If grammar accepts a string, there is a derivation of that string
using the productions
– “(())”
– S => (S)S => (S)  => ((S) S)  =>((S) )  => (() )  => (())

Why is the final S required?

9

More on CFGs
• Shorthand notation – vertical bar for multiple

productions
– S  a S a | T
– T  b T b | 

• CFGs powerful enough to expression the syntax in
most programming languages

• Derivation = successive application of productions
starting from S

• Acceptance? = Determine if there is a derivation for
an input token stream

10

Constructs which Cannot Be Described
by Context-Free Grammars

• Declarations of identifiers before
their usage

• Function calls with the proper
number of arguments

11

A Parser

Syntax analyzers (parsers) = CFG acceptors which
also output the corresponding derivation when the
token stream is accepted
Various kinds: LL(k), LR(k), SLR, LALR

Parser

Context free
grammar, G

Token stream, s
(from lexer)

Yes, if s in L(G)
No, otherwise

Error messages

12

RE is a Subset of CFG

Can inductively build a grammar for each RE
 S  
a S  a
R1 R2 S  S1 S2
R1 | R2 S  S1 | S2
R1* S  S1 S | 

Where
G1 = grammar for R1, with start symbol S1
G2 = grammar for R2, with start symbol S2

13

Grammar for Sum Expression
• Grammar

– S  E + S | E
– E  number | (S)

• Expanded
– S  E + S
– S  E
– E  number
– E  (S)

4 productions
2 non-terminals (S,E)
4 terminals: “(“, “)”, “+”, number
start symbol: S

14

Constructing a Derivation
• Start from S (the start symbol)
• Use productions to derive a sequence of

tokens
• For arbitrary strings α, β, γ and for a

production: A  β
– A single step of the derivation is
– α A γ => α β γ (substitute β for A)

• Example
– S  E + S
– (S + E) + E => (E + S + E) + E

15

Class Problem
– S  E + S | E
– E  number | (S)

• Derive: (1 + 2 + (3 + 4)) + 5

16

Parse Tree
S

E + S

(S) E

E + S 5

E + S1

2 E

(S)

E + S
E3

4

• Parse tree = tree representation of the
derivation

• Leaves of the tree are terminals
• Internal nodes are non-terminals
• No information about the order of the

derivation steps

17

Parse Tree vs Abstract Syntax Tree
S

E + S

(S) E

E + S 5

E + S1

2 E

(S)

E + S
E3 4

+

+

+

+

1

2

3 4

5

Parse tree also called “concrete syntax”

AST discards (abstracts) unneeded
information – more compact format

18

Derivation Order
• Can choose to apply productions in any order,

select non-terminal and substitute RHS of
production

• Two standard orders: left and right-most
• Leftmost derivation

– In the string, find the leftmost non-terminal and apply a
production to it

– E + S => 1 + S
• Rightmost derivation

– Same, but find rightmost non-terminal
– E + S => E + E + S

lm

rm

19

Leftmost Derivation Example

lm lm lm lm lm

E  E + E | E * E | (E) | -E | id
E => -E => -(E) => -(E+E) => - (id+E) => -(id+id)

E
E

E-


E

E-

()E


E

E-

()E

E E+


E

E-

()E

E E+

id


E

E-

()E

E E+

id id

20

Leftmost/Rightmost Derivation Examples

S => E + S => (S)+S => (E+S) + S => (1+S)+S => (1+E+S)+S =>
(1+2+S)+S => (1+2+E)+S => (1+2+(S))+S => (1+2+(E+S))+S =>
(1+2+(3+S))+S => (1+2+(3+E))+S => (1+2+(3+4))+S =>
(1+2+(3+4))+E => (1+2+(3+4))+5

S => E+S => E+E => E+5 => (S)+5 => (E+S)+5 => (E+E+S)+5 =>
(E+E+E)+5 => (E+E+(S))+5 => (E+E+(E+S))+5 =>
(E+E+(E+E))+5 => (E+E+(E+4))+5 => (E+E+(3+4))+5 =>
(E+2+(3+4))+5 => (1+2+(3+4))+5

• S  E + S | E
• E  number | (S)
• Leftmost derive: (1 + 2 + (3 + 4)) + 5

•Now, rightmost derive the same input string

Result: Same parse tree: same productions chosen, but in different order

21

Class Problem
– S  E + S | E
– E  number | (S) | -S

• Do the rightmost derivation of : 1 + (2 + -(3 + 4)) + 5

22

Ambiguous Grammars
• In the sum expression grammar, leftmost and

rightmost derivations produced identical parse
trees

• + operator associates to the right in parse tree
regardless of derivation order

(1+2+(3+4))+5

+

+

+

+

1

2

3 4

5

23

Ambiguous Grammars
• + associates to the right because of the right-recursive

production: S  E + S
• Consider another grammar

– S  S + S | S * S | number
• Ambiguous grammar = different derivations

produce different parse trees
– More specifically, G is ambiguous if there are 2

distinct leftmost (rightmost) derivations for some
sentence

24

Ambiguous Grammar - Example
S  S + S | S * S | number

Consider the expression: 1 + 2 * 3

Derivation 1: S => S+S =>
1+S => 1+S*S => 1+2*S => 1+2*3

Derivation 2: S => S*S =>
S+S*S => 1+S*S => 1+2*S => 1+2*3

+
*1

2 3

*
+

1 2

3

But, obviously not equal!

2 leftmost derivations

25

Impact of Ambiguity

• Different parse trees correspond to different
evaluations!

• Thus, program meaning is not defined!!

+
*1

2 3

*
+

1 2

3

 = 7 = 9

26

Can We Get Rid of Ambiguity?
• Ambiguity is a function of the grammar, not the

language!
• A context-free language L is inherently ambiguous

if all grammars for L are ambiguous
• Every deterministic CFL has an unambiguous

grammar
– So, no deterministic CFL is inherently ambiguous
– No inherently ambiguous programming languages have

been invented
• To construct a useful parser, must devise an

unambiguous grammar

27

Eliminating Ambiguity
• Often can eliminate ambiguity by adding

nonterminals and allowing recursion only on right or
left
– S  S + T | T
– T  T * num | num

– T non-terminal enforces precedence
– Left-recursion; left associativity

S

S + T

T T * 3

1 2

28

A Closer Look at Eliminating Ambiguity
• Precedence enforced by

– Introduce distinct non-terminals for each
precedence level

– Operators for a given precedence level are
specified as RHS for the production

– Higher precedence operators are accessed by
referencing the next-higher precedence non-
terminal

29

Associativity
• An operator is either left, right or non associative

– Left: a + b + c = (a + b) + c
– Right: a ^ b ^ c = a ^ (b ^ c)
– Non: a < b < c is illegal (thus undefined)

• Position of the recursion relative to the
operator dictates the associativity
– Left (right) recursion  left (right) associativity
– Non: Don’t be recursive, simply reference next

higher precedence non-terminal on both sides of
operator

30

Class Problem
S  S + S | S – S | S * S | S / S | (S) | -S | S ^ S | num

Enforce the standard arithmetic precedence rules and remove
all ambiguity from the above grammar

Precedence (high to low)
(), unary –
^
*, /
+, -
Associativity
^ = right
rest are left

31

stmt  if expr then stmt
| if expr then stmt else stmt
| other

“Dangling Else” Problem

stmt

if expr then stmt

expr then stmt else stmt
E1

E2 S1 S2

if

stmt

expr then stmt else stmt
E1 S2

if

if expr then stmt
E2 S1

if E1 then if E2 then S1 else S2

32

stmt  matched_stmt
| unmatched_stmt

matched_stmt  if expr then matched_stmt else matched_stmt
| other

unmatched_stmt  if expr then stmt
| if expr then matched_stmt else unmatched_stmt

Grammar for Closest-if Rule

• Want to rule out: if (E) if (E) S else S
• Impose that unmatched “if” statements occur

only on the “else” clauses

33

Parsing Top-Down
Goal: construct a leftmost derivation of string while reading in
sequential token stream

Partly-derived String Lookahead parsed part unparsed part
E + S ((1+2+(3+4))+5
(S) + S 1 (1+2+(3+4))+5
(E+S)+S 1 (1+2+(3+4))+5
(1+S)+S 2 (1+2+(3+4))+5
(1+E+S)+S 2 (1+2+(3+4))+5
(1+2+S)+S 2 (1+2+(3+4))+5
(1+2+E)+S ((1+2+(3+4))+5
(1+2+(S))+S 3 (1+2+(3+4))+5
(1+2+(E+S))+S 3 (1+2+(3+4))+5
 ...

S  E + S | E
E  num | (S)

34

Problem with Top-Down Parsing
Want to decide which production to apply based
on next symbol

Ex1: “(1)” S => E => (S) => (E) => (1)
Ex2: “(1)+2” S => E+S => (S)+S => (E)+S => (1)+E => (1)+2

S  E + S | E
E  num | (S)

How did you know to pick E+S in Ex2, if you picked
E followed by (S), you couldn’t parse it?

35

Grammar is Problem

• This grammar cannot be parsed top-down
with only a single look-ahead symbol!

• Not LL(1) = Left-to-right scanning, Left-most
derivation, 1 look-ahead symbol

• Is it LL(k) for some k?
• If yes, then can rewrite grammar to allow top-

down parsing: create LL(1) grammar for
same language

S  E + S | E
E  num | (S)

36

Making a Grammar LL(1)

• Problem: Can’t decide which
S production to apply until we
see the symbol after the first
expression

• Left-factoring: Factor
common S prefix, add new
non-terminal S’ at decision
point. S’ derives (+S)*

• Also: Convert left recursion to
right recursion

S  E + S
S  E
E  num
E  (S)

S  ES’
S’  
S’  +S
E  num
E  (S)

37

Parsing with New Grammar

Partly-derived String Lookahead parsed part unparsed part
ES’ ((1+2+(3+4))+5
(S)S’ 1 (1+2+(3+4))+5
(ES’)S’ 1 (1+2+(3+4))+5
(1S’)S’ + (1+2+(3+4))+5
(1+ES’)S’ 2 (1+2+(3+4))+5
(1+2S’)S’ + (1+2+(3+4))+5
(1+2+S)S’ ((1+2+(3+4))+5
(1+2+ES’)S’ ((1+2+(3+4))+5
(1+2+(S)S’)S’ 3 (1+2+(3+4))+5
(1+2+(ES’)S’)S’ 3 (1+2+(3+4))+5
(1+2+(3S’)S’)S’ + (1+2+(3+4))+5
(1+2+(3+E)S’)S’ 4 (1+2+(3+4))+5
 ...

S  ES’ S’   | +S E  num | (S)

38

Predictive Parsing

• LL(1) grammar:
– For a given non-terminal, the lookahead symbol

uniquely determines the production to apply
– Top-down parsing = predictive parsing
– Driven by predictive parsing table of

• non-terminals x terminals  productions

39

Adaptation for Predictive Parsing
• Elimination of left recursion
expr expr + term | term

A  A | 

A  R
R  R | 

• Left factoring
stmt  if expr then stmt

| if expr then stmt else stmt

A   1 |  2

A   A'
A'  1 | 2

40

E  E + T | T
T  T * F | F
F  (E) | id

E  TE'
E'  +TE' | 
T  FT'
T'  *FT' | 
F  (E) | id

Transformation for Arithmetic
Expression Grammar

41

a + b $

X
Y
Z
$

Predictive Parser
 Program

Parser
Table

M

Output

1. If X=a=$ stop and announce success
2. If X=a<>$ pop X off the stack and advance the input

pointer
3. If X is a nonterminal, use production from M[X,a]

Predictive Parser without Recursion

42

The M Table for Arithmetic Expressions

Nonterminal Input Symbol
Id + * () $

E
E’
T
T’
F

E ® TE’ E® TE’
E’® +TE’ E’®Î E’®Î

T ® FT’ T ® FT’
T’ ®Î T’ ® *FT’ T’®Î T’®Î

F ® id F ® (E)

43

Class Problem

• Parse the string
– id + id * id

44

Constructing Parse Tables
• Can construct predictive parser if:

– For every non-terminal, every lookahead symbol can be
handled by at most 1 production

• FIRST() for an arbitrary string of terminals and
non-terminals  is:
– Set of symbols that might begin the fully expanded

version of 
• FOLLOW(X) for a non-terminal X is:

– Set of symbols that might follow the derivation of X in the
input stream

FIRST FOLLOW

X

45

1. If X is a terminal, FIRST(X) = {X}

2. If X   is a production,
add  to FIRST(X)

3. If X is nonterminal and X  Y1Y2…Yk is a production,
place a in FIRST(X) if for some i, a is in FIRST(Yi)
and  is in FIRST(Y1), … , FIRST(Yi-1).
If  is in FIRST(Yj) for every j, add  to FIRST(X).

Computation of FIRST(X)

46

Computation of FOLLOW(X)

1. Place $ in FOLLOW(S), where S is the start
symbol

2. If there is a production
A  B,
everything in FIRST() except for  is placed in
FOLLOW(B)

3. If there is a production A  B
or a production A  B where FIRST()
contains , place all elements from FOLLOW(A)
in FOLLOW(B)

47

Construction of Parsing Table M

1. For every production A   do steps 2 and 3

2. For each terminal a in FIRST() add A   to M[A,a]

3. If FIRST() contains , place A   in
M[A,b] for each b in FOLLOW(A)

Grammar is LL(1), if no conflicting entries

48

Error Handling
Types of errors
• Lexical
• Syntactic
• Semantic
• Logical

Error handler in a parser
• Should report the presence of errors

clearly and accurately
• Should recover from each error quickly

enough to be able to detect subsequent
errors

• Should not significantly slow down the
processing of correct programs

49

program prmax(input,output);
var

x,y: integer;
function max(i:integer; j:integer): integer;
begin

if I > j then max:=i
else max :=j

end;

begin
readln (x,y);
writeln(max(x,y))

end.

Typical Errors in A Pascal Program

50

Error Handling Strategies

● Panic mode – skip tokens until a
synchronizing token is found

● Phrase level – local error correction
● Error productions
● Global correction

51

Predictive Parser – Error Recovery

• Synchronizing tokens
– FOLLOW(A)
– Keywords
– FIRST(A)
– Empty production (if exists) as default in case of

error
– Insertion of token from the top of the stack

• Local error correction

52

Table M with Synchronizing Tokens

Nonterminal Input symbol
Id + * () $

E synch synch
E’
T synch synch synch
T’
F synch synch synch synch

E ® TE’ E® TE’
E’® +TE’ E’®Î E’®Î

T ® FT’ T ® FT’
T’ ®Î T’ ® *FT’ T’®Î T’®Î

F ® id F ® (E)

• If M[A,a] blank - skip input symbol a
• If M[A,a] contains synch - pop nonterminal

from the stack
• If the token at the top of stack does not

match the input - pop terminal from the stack

53

Class Problem

• Parse the string
– id*+id

54

Bottom-Up Parsing

• A more power parsing technology
• LR grammars – more expressive than LL

– Construct right-most derivation of program
– Left-recursive grammars, virtually all

programming languages are left-recursive
– Easier to express syntax

• Shift-reduce parsers
– Parsers for LR grammars
– Automatic parser generators (yacc, bison)

55

Bottom-Up Parsing

• Right-most derivation – Backward
– Start with the tokens
– End with the start symbol
– Match substring on RHS of production, replace

by LHS

(1+2+(3+4))+5 <= (E+2+(3+4))+5 <= (S+2+(3+4))+5 <= (S+E+(3+4))+5
<= (S+(3+4))+5 <= (S+(E+4))+5 <= (S+(S+4))+5 <= (S+(S+E))+5 <=
(S+(S))+5 <= (S+E)+5 <= (S)+5 <= E+5 <= S+5 <= S+E <= S

S  S + E | E
E  num | (S)

56

Bottom-Up Parsing

(1+2+(3+4))+5
 <= (E+2+(3+4))+5
<= (S+2+(3+4))+5
<= (S+E+(3+4))+5

Advantage of bottom-up parsing:
can postpone the selection of
productions until more of the
input is scanned

S

S + E

(S)

S + E

5
E

S + E

2E
1

(S)

S + E
4E

3

S  S + E | E
E  num | (S)

57

Top-Down Parsing
S  S + E | E
E  num | (S)

In left-most derivation, entire
tree above token (2) has been
expanded when encountered

S

S + E

(S)

S + E

5E

S + E
2E

1

(S)

S + E
4E

3

S => S+E => E+E =>
(S)+E => (S+E)+E=>
(S+E+E)+E =>
(E+E+E)+E=> (1+E+E)
+E => (1+2+E)+E ...

58

Top-Down vs Bottom-Up

• Bottom-up: Don’t need to figure out as much of the
parse tree for a given amount of input  More time
to decide what rules to apply

scanned unscanned scanned unscanned

Top-down Bottom-up

59

Terminology: LL vs LR
• LL(k)

– Left-to-right scan of input
– Left-most derivation
– k symbol lookahead
– [Top-down or predictive] parsing or LL parser
– Performs pre-order traversal of parse tree

• LR(k)
– Left-to-right scan of input
– Right-most derivation
– k symbol lookahead
– [Bottom-up or shift-reduce] parsing or LR parser
– Performs post-order traversal of parse tree

60

E  E + E | E * E | (E) | id
E  E + E

 E + E * E
 E + E * id3

 E + id2 * id3

 id1 + id2 * id3

Handles

E  E * E
 E * id3

 E + E * id3

 E + id2 * id3

 id1 + id2 * id3

• Handle of a string is a substring that matches the
right side of a production, and whose reduction to
the nonterminal on the left size of the production
represents one step along the reverse of a
rightmost derivation

61

Handles

Right-Sentential Form Handle Reducing Production

E + E
E

id1+ id2 * id3 id1 E® id
E + id2* id3 id2 E® id
E + E * id3 id3 E® id
E + E * E E * E E® E * E

E + E E® E + E

62

Shift-Reduce Parsing

Stack Input Operation
$ Shift

Shift
Shift

Shift
Shift

$
$
$
$Accept

id1 + id2 * id3$
$id1 + id2 * id3$Reduce by E ® id
$E + id2 * id3$
$E + id2 * id3$
$E + id2 * id3$Reduce by E® id
$E + E * id3$
$E + E * id3$
$E + E * id3 Reduce by E ® id
$E + E * E Reduce by E ®E * E
$E + E Reduce by E ®E + E
$E

– Parsing is a sequence of shifts and reduces
– Shift: move look-ahead token to stack
– Reduce: Replace symbols  from top of stack with non-terminal symbol X

corresponding to the production: X  (e.g., pop , push X)

63

Potential Problems

– How do we know which action to take: whether
to shift or reduce, and which production to apply

– Issues
• Sometimes can reduce but should not
• Sometimes can reduce in different ways

64

Action Selection Problem

– Given stack  and look-ahead symbol b, should
parser:
• Shift b onto the stack making it b ?
• Reduce X   assuming that the stack has the form
 =  making it X ?

– If stack has the form , should apply reduction X  
(or shift) depending on stack prefix 
•  is different for different possible reductions since
’s have different lengths

65

Shift/Reduce and Reduce/Reduce Conflicts

stmt  if expr then stmt
| if expr then stmt else stmt
| other

… if expr then stmt else … $

...
stmt  id (parameter_list)
...
expr  id (expr_list)
...
… id (id , id) … $

66

yacc / bison – Parser Generators
%{
#include <ctype.h>
%}

%token DIGIT

%%
line: expr '\n' { printf("%d\n", $1); }

;
expr: expr '+' term { $$ = $1 + $3; }

| term
;

term: term '*' factor { $$ = $1 * $3; }
| factor
;

factor : '(' expr ')' { $$ = $2; }
| DIGIT
;

%%
int yylex() {

int c;
c = getchar();
if (isdigit(c)) {
 yylval = c - '0';
 return DIGIT;
}
return c;

}

67

%{
#include <ctype.h>
#include <stdio.h>
#define YYSTYPE double
%}
%token NUMBER
%left '+' '-'
%left '*' '/'
%right UMINUS
%%
lines: lines expr '\n' { printf("%g\n", $2); }

| lines '\n'
| /* empty */
;

expr : expr '+' expr { $$ = $1 + $3; }
| expr '-' expr { $$ = $1 - $3; }
| expr '*' expr { $$ = $1 * $3; }
| expr '/' expr { $$ = $1 / $3; }
| '(' expr ')' { $$ = $2; }
| '-' expr %prec UMINUS { $$ = -$2; }
| NUMBER
;

%%
yylex() {

int c;
while ((c = getchar()) == ' ');
if (c == '.' || isdigit(c))) {

ungetc(c, stdin);
scanf("%lf",&yylval);
return NUMBER;

}
return c;

}

Operator Precedence in bison

68

yacc / bison – Conflict Resolution
1. Reduce/reduce – first production listed in the input file

selected
2. Shift/reduce – shift performed

Terminals can be assigned with precedence and associativity
in declarative part of the input file.
Precedence of a production is usually the precedence of
rightmost terminal. Can be overriden.

For the conflict: reduce A   and shift a

reduce – if precedence of production greater than precedence
of a or they are equal and associativity of the production is left

69

%{
#include <ctype.h>
#include <stdio.h>
#define YYSTYPE double
%}

%token NUMBER
%left '+' '-'
%left '*' '/'
%right UMINUS
%%
lines: lines expr '\n' { printf("%g\n", $2); }

| lines '\n'
| /* empty */
| error '\n' { yyerror("reenter last line:"); yyerrok; }
;

expr: expr '+' expr { $$ = $1 + $3; }
| expr '-' expr { $$ = $1 - $3; }
| expr '*' expr { $$ = $1 * $3; }
| expr '/' expr { $$ = $1 / $3; }
| '(' expr ')' { $$ = $2; }
| '-' expr %prec UMINUS { $$ = -$2; }
| NUMBER
;

%%

Error Handling

70

LR Parsing Engine

• Basic mechanism
– Use a set of parser states
– Use stack with alternating symbols and states

• E.g., 1 (6 S 10 + 5 (blue = state numbers)
– Use parsing table to:

• Determine what action to apply (shift/reduce)
• Determine next state

• The parser actions can be precisely
determined from the table

71

LR Parsing Table

• Algorithm: look at entry for current state S and input
terminal C
– If Action[S,C] = s(S’) then shift:

• push(C), push(S’)
– If Action[S,C] = X  then reduce:

• pop(2*||), S’= top(), push(X), push(Goto[S’,X])

Next action
and next state Next state

Terminals Non-terminals

State

Action table Goto table

72

LR Parsing Table Example

() id , $ S L
1 s3 s2 g4
2 Sid Sid Sid Sid Sid
3 s3 s2 g7 g5
4 accept
5 s6 s8
6 S(L) S(L) S(L) S(L) S(L)
7 LS LS LS LS LS
8 s3 s2 g9
9 LL,S LL,S LL,S LL,S LL,S

St
at

e

Action Goto

We want to derive this in an algorithmic fashion

73

Parsing Example ((a),b)
S  (L) | id
L  S | L,S

derivation stack input action
((a),b)<= 1 ((a),b) shift, goto 3
((a),b)<= 1(3 (a),b) shift, goto 3
((a),b)<= 1(3(3 a),b) shift, goto 2
((a),b)<= 1(3(3a2),b) reduce Sid
((S),b)<= 1(3(3(S7),b) reduce LS
((L),b)<= 1(3(3(L5),b) shift, goto 6
((L),b)<= 1(3(3L5)6 ,b) reduce S(L)
(S,b)<= 1(3S7 ,b) reduce LS
(L,b)<= 1(3L5 ,b) shift, goto 8
(L,b)<= 1(3L5,8 b) shift, goto 2
(L,b)<= 1(3L5,8b2) reduce Sid
(L,S)<= 1(3L8,S9) reduce LL,S
(L)<= 1(3L5) shift, goto 6
(L)<= 1(3L5)6 $ reduce S(L)
S 1S4 $ done

74

LR(k) Grammars

• LR(k) = Left-to-right scanning, right-most
derivation, k lookahead chars

• Main cases
– LR(0), LR(1)
– Some variations SLR and LALR(1)

• Parsers for LR(0) Grammars:
– Determine the actions without any lookahead
– Will help us understand shift-reduce parsing

75

Building LR(0) Parsing Tables
• To build the parsing table:

– Define states of the parser
– Build a DFA to describe transitions between states
– Use the DFA to build the parsing table

• Each LR(0) state is a set of LR(0) items
– An LR(0) item: X   .  where X   is a production

in the grammar
– The LR(0) items keep track of the progress on all of the

possible upcoming productions
– The item X   .  abstracts the fact that the parser

already matched the string  at the top of the stack

76

Example LR(0) State
• An LR(0) item is a production from the language

with a separator “.” somewhere in the RHS of the
production

• Sub-string before “.” is already on the stack
(beginnings of possible ’s to be reduced)

• Sub-string after “.”: what we might see next

E  num .
E  (. S)

state
item

77

Class Problem

•For the production,
•E  num | (S)

•Two items are:
•E  num .
•E  (. S)

•Are there any others?
• If so, what are they?
• If not, why?

78

LR(0) Grammar
• Nested lists

– S  (L) | id
– L  S | L,S

• Examples
– (a,b,c)
– ((a,b), (c,d), (e,f))
– (a, (b,c,d), ((f,g)))

S

(L)

L , S

L , S

(S)S
a L , S

S
b

c

d

Parse tree for
(a, (b,c), d)

79

Start State and Closure

• Start state
– Augment grammar with production: S’  S $
– Start state of DFA has empty stack: S’  . S $

• Closure of a parser state:
– Start with Closure(S) = S
– Then for each item in S:

• X   . Y 
• Add items for all the productions Y   to the closure

of S: Y  . 

80

Closure Example

S  (L) | id
L  S | L,S

DFA start state
S’  . S $

closure
S’  . S $
S  . (L)
S  . id

- Set of possible productions to be reduced next
- Added items have the “.” located at the beginning:
 no symbols for these items on the stack yet

81

The Goto Operation

• Goto operation = describes transitions
between parser states, which are sets of
items

• Algorithm: for state S and a symbol Y
– If the item [X   . Y ] is in S, then
– Goto(S, Y) = Closure([X   Y . ])

S’  . S $
S  . (L)
S  . id

Goto(S, ‘(‘) Closure([S  (. L)])

82

Class Problem

•If I = { [E’  . E]}, then Closure(I) = ??
•If I = { [E’  E .], [E  E . + T] }, then Goto(I,+) = ??

E’  E
E  E + T | T
T  T * F | F
F  (E) | id

83

Goto: Terminal Symbols

S’  . S $
S  . (L)
S  . id

S  (. L)
L  . S
L  . L, S
S  . (L)
S  . id

S  id .
id

(

id (

Grammar
S  (L) | id
L  S | L,S

In new state, include all items that have appropriate input symbol
just after dot, advance dot in those items and take closure

84

Applying Reduce Actions

S’  . S $
S  . (L)
S  . id

S  (. L)
L  . S
L  . L, S
S  . (L)
S  . id

S  id .
id

(

id (
Grammar
S  (L) | id
L  S | L,S

S  (L .)
L  L . , S

L  S .

L

S

states causing reductions
(dot has reached the end!)

Pop RHS off stack, replace with LHS X (X  ),
then rerun DFA

85

Reductions

• On reducing X   with stack 
– Pop  off stack, revealing prefix  and state
– Take single step in DFA from top state
– Push X onto stack with new DFA state

• Example

derivation stack input action
((a),b) <= 1 (3 (3 a),b) shift, goto 2
((a),b) <= 1 (3 (3 a 2),b) reduce S  id
((S),b) <= 1 (3 (3 S 7),b) reduce L  S

86

Full DFA

S’  . S $
S  . (L)
S  . id

S  (. L)
L  . S
L  . L, S
S  . (L)
S  . id

S  id .id

(

id

(

S  (L .)L
L  L . , S

L  S .

S

L  L , . S
S  . (L)
S  . id

L  L,S .

S  (L) .
S’  S . $

final state

1 2 8 9

6

5

3

74

S

,

)
S

$

id

L

Grammar
S  (L) | id
L  S | L,S

(

87

Building the Parsing Table

• States in the table = states in the DFA
• For transition S  S’ on terminal C:

– Action[S,C] += Shift(S’)
• For transition S  S’ on non-terminal N:

– Goto[S,N] += Goto(S’)
• If S is a reduction state X   then:

– Action[S,*] += Reduce(X  )

88

LR(0) Summary

• LR(0) parsing recipe:
– Start with LR(0) grammar
– Compute LR(0) states and build DFA:

• Use the closure operation to compute states
• Use the goto operation to compute transitions

– Build the LR(0) parsing table from the DFA
• This can be done automatically

89

Class Problem

•Generate the DFA for the following grammar
•S  E + S | E
•E  num

90

LR(0) Limitations
• An LR(0) machine only works if states with reduce

actions have a single reduce action
– Always reduce regardless of lookahead

• With a more complex grammar, construction gives
states with shift/reduce or reduce/reduce conflicts

• Need to use lookahead to choose

L  L , S .
L  L , S .
S  S . , L

L  S , L .
L  S .

OK shift/reduce reduce/reduce

91

A Non-LR(0) Grammar
• Grammar for addition of numbers

– S  S + E | E
– E  num

• Left-associative version is LR(0)
• Right-associative is not LR(0) as you saw

with the previous class problem
– S  E + S | E
– E  num

92

LR(0) Parsing Table

S’  . S $
S  .E + S
S  . E
E  .num E  num .

S  E . +S
S  E .

E

num

+

S  E + S .
S’  S $.

S

S  E + . S
S  . E + S
S  . E
E  . num

S’  S . $

1 2

5

3

7

4
S

Grammar
S  E + S | E
E  num

$

E
num

num + $ E S
1 s4 g2 g6
2 SE s3/SE SE

Shift or
reduce
in state 2?

6

93

Solve Conflict With Lookahead

• 3 popular techniques for employing
lookahead of 1 symbol with bottom-up
parsing
– SLR – Simple LR
– LALR – LookAhead LR
– LR(1)

• Each as a different means of utilizing the
lookahead
– Results in different processing capabilities

94

SLR Parsing
• SLR Parsing = Easy extension of LR(0)

– For each reduction X  , look at next symbol C
– Apply reduction only if C is in FOLLOW(X)

• SLR parsing table eliminates some conflicts
– Same as LR(0) table except reduction rows
– Adds reductions X   only in the columns of

symbols in FOLLOW(X)

num + $ E S
1 s4 g2 g6
2 s3 SE

Example: FOLLOW(S) = {$}

Grammar
S  E + S | E
E  num

95

SLR Parsing Table

• Reductions do not fill entire rows as before
• Otherwise, same as LR(0)

num + $ E S
1 s4 g2 g6
2 s3 SE
3 s4 g2 g5
4 Enum Enum
5 SE+S
6 s7
7 accept

Grammar
S  E + S | E
E  num

96

Class Problem

•Consider:
•S  L = R
•S  R
•L  *R
•L  ident
•R  L

Think of L as l-value, R as r-value, and
* as a pointer dereference

When you create the states in the SLR(1) DFA,
2 of the states are the following:

S  L . = R
R  L . S  R .

Do you have any shift/reduce conflicts?

97

LR(1) Parsing
• Get as much as possible out of 1 lookahead

symbol parsing table
• LR(1) grammar = recognizable by a shift/reduce

parser with 1 lookahead
• LR(1) parsing uses similar concepts as LR(0)

– Parser states = set of items
– LR(1) item = LR(0) item + lookahead symbol possibly

following production
• LR(0) item: S  . S + E
• LR(1) item: S  . S + E , +
• Lookahead only has impact upon REDUCE

operations, apply when lookahead = next input

98

LR(1) States
• LR(1) state = set of LR(1) items
• LR(1) item = (X   .  , y)

– Meaning:  already matched at top of the stack, next
expect to see  y

• Shorthand notation
– (X   .  , {x1, ..., xn})
– means:

• (X   .  , x1)
• . . .
• (X   .  , xn)

• Need to extend closure and goto operations

S  S . + E +,$
S  S + . E num

99

LR(1) Closure
• LR(1) closure operation:

– Start with Closure(S) = S
– For each item in S:

• X   . Y  , z
• and for each production Y   , add the following item to the

closure of S: Y  .  , FIRST(z)
– Repeat until nothing changes

• Similar to LR(0) closure, but also keeps track of
lookahead symbol

100

LR(1) Start State
• Initial state: start with (S’  . S , $), then apply

closure operation
• Example: sum grammar

S’  . S , $
S’  . S , $
S  . E + S , $
S  . E , $
E  . num , +,$

closure

S’  S $
S  E + S | E
E  num

101

LR(1) Goto Operation
• LR(1) goto operation = describes transitions

between LR(1) states
• Algorithm: for a state S and a symbol Y (as before)

– If the item [X   . Y ] is in S, then
– Goto(S, Y) = Closure([X   Y . ])

S  E . + S , $
S  E . , $ Closure({S  E + . S , $})

Goto(S1, ‘+’)S1 S2

Grammar:
S’  S$
S  E + S | E
E  num

102

Class Problem

1. Compute: Closure(I = {S  E + . S , $})
2. Compute: Goto(I, num)
3. Compute: Goto(I, E)

S’  S $
S  E + S | E
E  num

103

LR(1) DFA Construction

S’  . S , $
S  . E + S , $
S  . E , $
E  .num , +,$

E  num . , +,$

S’  S . , $

E

num

+

S  E+S. , $

S

S  E + . S , $
S  . E + S , $
S  . E , $
E  . num , +,$

S  E . + S , $
S  E . , $

S

Grammar
S’  S$
S  E + S | E
E  numE

num

104

LR(1) Reductions

S’  . S , $
S  . E + S , $
S  . E , $
E  .num , +,$

E  num . , +,$

S’  S . , $

E

num

+

S  E+S. , $

S

S  E + . S , $
S  . E + S , $
S  . E , $
E  . num , +,$

S  E . + S , $
S  E . , $

S

Grammar
S’  S$
S  E + S | E
E  numE

num

•Reductions correspond to LR(1) items of the form (X   . , y)

105

LR(1) Parsing Table Construction

• Same as construction of LR(0), except for
reductions

• For a transition S  S’ on terminal x:
– Table[S,x] += Shift(S’)

• For a transition S  S’ on non-terminal N:
– Table[S,N] += Goto(S’)

• If I contains {(X   . , y)} then:
– Table[I,y] += Reduce(X  )

106

LR(1) Parsing Table Example

S’  . S , $
S  . E + S , $
S  . E , $
E  .num , +,$

E
+

S  E + . S , $
S  . E + S , $
S  . E , $
E  . num , +,$

S  E . + S , $
S  E . , $

Grammar
S’  S$
S  E + S | E
E  num

1

2

3

+ $ E
1 g2
2 s3 SE

Fragment of the
parsing table

107

Class Problem
●Compute the LR(1) DFA for the following
grammar

•E  E + T | T
•T  TF | F
•F  F* | a | b

108

LALR(1) Grammars
• Problem with LR(1): too many states
• LALR(1) parsing (aka LookAhead LR)

– Constructs LR(1) DFA and then merge any 2 LR(1)
states whose items are identical except lookahead

– Results in smaller parser tables
– Theoretically less powerful than LR(1)

• LALR(1) grammar = a grammar whose LALR(1)
parsing table has no conflicts

S  id . , +
S  E . , $

S  id . , $
S  E . , ++ = ??

109

LALR Parsers

• LALR(1)
– Generally same number of states as SLR (much

less than LR(1))
– But, with same lookahead capability of LR(1)

(much better than SLR)
– Example: Pascal programming language

• In SLR, several hundred states
• In LR(1), several thousand states

110

LL/LR Grammar Summary
• LL parsing tables

– Non-terminals x terminals  productions
– Computed using FIRST/FOLLOW

• LR parsing tables
– LR states x terminals  {shift/reduce}
– LR states x non-terminals  goto
– Computed using closure/goto operations on LR states

• A grammar is:
– LL(1) if its LL(1) parsing table has no conflicts
– same for LR(0), SLR, LALR(1), LR(1)

111

Classification of Grammars

LR(0)
SLR

LALR(1)
LR(1)

LL(1)

LR(k)  LR(k+1)
LL(k)  LL(k+1)

LL(k)  LR(k)
LR(0)  SLR
LALR(1)  LR(1)

not to scale 

112

Automate the Parsing Process
• Can automate:

– The construction of LR parsing tables
– The construction of shift-reduce parsers based on these

parsing tables
• LALR(1) parser generators

– yacc, bison
– Not much difference compared to LR(1) in practice
– Smaller parsing tables than LR(1)
– Augment LALR(1) grammar specification with

declarations of precedence, associativity
– Output: LALR(1) parser program

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112

