
1

Syntax-Directed Translation

2

Basic Idea

● Guided by context-free grammar
● Associate information with a programming

language construction by attaching
attributes to the grammar symbols
representing the construction

● Values for attributes are computed by
“semantic rules ”associated with the
grammar productions

3

Two Notations for Associating
Semantic Rules with Productions

● Syntax-directed definitions
● High-level specifications for translations
● Hide implementation details
● No need to specify explicitly the order in
which translation take place

4

Two Notations for Associating
Semantic Rules with Productions

● Translation schemes
● Indicate the order in which semantic rules
are to be evaluated

● Allow some implementation details to be
shown

5

Conceptual View of Syntax-
Directed Translation

input
string

syntax
tree

dependency
graph

evaluation order
for semantic rules

● Notes:
● Evaluation of the semantic rules may generate code,

save information in a symbol table, issue error
messages, or perform any other activities

● Special cases of syntax-directed definitions can be
implemented in a single pass by evaluating semantic
rules during parsing, without explicitly constructing a
parse tree or a graph showing dependencies between
attributes

6

Syntax-Directed Definitions

● Syntax-directed definition
● A generalization of a context-free grammar in which each

grammar symbol has an associated set of attributes
● Attribute

● Represent anything we choose: a string, a number, a
type, a memory location, etc.

● The value of an attribute at a parse-tree node is
defined by a semantic rule associated with the
production used at that node

7

Synthesized and Inherited Attributes

● In a syntax-directed definition, each grammar
production A® has associated with it a set of
semantic rules of the form
b:=f(c

1
,c

2
,...c

k
), where f is a function, and either

● b is a synthesized attribute of A, and c
1
,c

2
,...c

k
 are

attributes belonging to the grammar symbols of the
production, or

● b is an inherited attribute of one of the grammar symbols
on the right side of the production, and c

1
,c

2
,...c

k
 are

attributes belonging to the grammar symbols of the
production

8

Synthesized and Inherited Attributes

● Synthesized attribute
● The value of a synthesized attribute at a node is

computed from the values of attributes at the
children of that node in the parse tree

● Inherited attribute
● The value of an inherited attribute is computed

from the values of attributes at the siblings and
parent of that node

9

Annotated Parse Tree

• A parse tree showing the values of
attributes at each node

• The process of computing the attribute
values at the nodes is called annotating
or decorating the parse tree

• Values for attributes of terminals are
usually supplied by the lexical analyzer

10

S-Attributed Definition

Production Semantic Rules
print(E.val)

E.val := T.val

T.val := F.val
F.val := E.val

L E n
E E1+ T E.val:=E1.val + T.val

E T
T T1 * F T.val := T1.val * F.val

T F
F (E)
F digit F.val := digit.lexval

L

n

E.val = 19

+ T.val = 4E.val = 15

T.val = 15

*T.val = 3 F.val = 5

F.val = 3

digit.lexval = 3

digit.lexval = 5

F.val = 4

digit.lexval = 4

3 * 5 + 4 n

A syntax-directed
definition that uses
synthesized attributes
exclusively

11

Inherited Attributes

● Expressing the dependence of a programming
language construction on the context in which it
appears

● By keeping track of the context whether an identifier
appears on the left or right side of an assignment context
we can decide whether the address or the value of the
identifier is needed

● Although it is always possible to rewrite a syntax-directed
definition to use only synthesized attributes, it is often
natural to use syntax-directed definition with inherited
attributes

12

Example of Non-S-Attributed Definition
Production Semantic Rules

D T L L.in := T.type
T int T.type := integer
T real T.type := real

L L1 , id
L1.in := L.in

addtype(id.entry, L.in)
L id addtype(id.entry, L.in)

D

T.type = real L.in = real

real
L.in = real , id3

L.in = real , id2

id1

13

Attribute Grammar

• A syntax-directed definition in which the
functions in semantic rules cannot have
side effects

14

Dependency Graph

● A directed graph that represents dependencies
between attributes set up by the semantic rules

● Notes:
● From the dependency graph, we can derive an

evaluation order for the semantic rules
● Evaluation of the semantic rules defines the values of the

attributes at the nodes in the parse tree
● A semantic rule may have side effects, e,g, printing a

value or updating a global variable
● For procedure calls with side effects we introduce a

dummy synthesized attribute

15

E

E1 E2+

val

valval

E E1 + E2 E.val := E1.val + E2.val

Dependency Graph
for each node n in the parse tree do

for each attribute a of the grammar symbol at n do
construct a node in the dependency graph for a;

for each node n in the parse tree do
for each semantic rule b:=f(c

1
,c

2
,...c

k
) associated with the production used at n do

for i := 1 to k do
construct and edge from the node for c

i
to the node for b

i

for each node n in the parse tree do
for each attribute a of the grammar symbol at n do

construct a node in the dependency graph for a;
for each node n in the parse tree do

for each semantic rule b:=f(c
1
,c

2
,...c

k
) associated with the production used at n do

for i := 1 to k do
construct and edge from the node for c

i
to the node for b

i

• The three nodes of the dependency graph marked by • represent the
synthesized attributes E.val, E

1
.val, and E

2
.val at the corresponding

nodes in the parse tree

• The dotted lines represent the parse tree and are not part of the
dependency graph

16

Acyclic Dependency Graphs for Parse Trees

A  X Y A.a := f(X.x, Y.y)

X.x := f(A.a, Y.y)

Y.y := f(A.a, X.x)

A.a

X.x Y.y

A.a

X.x Y.y

A.a

X.x Y.y

Direction of

value dependence

17

Dependency Graphs with Cycles?

• Edges in the dependence graph show the
evaluation order for attribute values

• Dependency graphs cannot be cyclic

A.a := f(X.x)
X.x := f(Y.y)
Y.y := f(A.a)

A.a

X.x Y.y

Error: cyclic dependence

18

Evaluation Order

● Basic idea in the topological sort of a graph
● Topological sort of a graph

● Any ordering m
1
,m

2
,…,m

k
 of the nodes of the graph such

that edges go from nodes earlier in the ordering to later
nodes

● From a topological sort of a dependency graph, we
obtain an evaluation order for the semantic rules

19

D

T L

real
L , id3

L , id2

id1

4
type

in 5 6

3 entry

2 entry

1 entry

10in 9

in 7 8

a4:=real;
a5:=a4;
addtype(id3.entry, a5);
a7:=a5;
addtype(id2.entry, a7);
a9:=a7;
addtype(id1.entry, a9);

a4:=real;
a5:=a4;
addtype(id3.entry, a5);
a7:=a5;
addtype(id2.entry, a7);
a9:=a7;
addtype(id1.entry, a9);

Dependency Graph

Production Semantic Rules
L.in := T.type
T.type := integer
T.type := real

D T L
T int
T real

L L1 , id
L1.in := L.in

addtype(id.entry, L.in)
L id addtype(id.entry, L.in)

20

Evaluation Order
● Parse-tree methods

● Obtain an evaluation order from a topological sort of the
dependency graph constructed from the parse tree for each
input

● It will fail if the dependency graph for the particular parse tree
has a cycle

● Rule-based methods
● At compiler-construction time, the semantic rules associated

with productions are analyzed
● For each production, the order is predetermined

● Oblivious methods
● An evaluation order is chosen without considering the

semantic rules
● It restricts the class of syntax-directed definitions that can be

implemented

21

Evaluation Order

• Rule-based and oblivious methods need
not explicitly construct the dependency
graph at compile time, so they can be
more efficient in their use of compiler time
and space

22

Abstract Syntax Tree (AST)

• Derivation = sequence of applied
productions

• S => E+S => 1+S => 1+E => 1+2

• Parse tree = graph representation of
a derivation

• Doesn’t capture the order of applying
the productions

• AST discards unnecessary
information from the parse tree

• In an AST, operators and keywords
do not appear as leaves, but rather
are associated with the interior node
that would be parent of those leaves
in the parse tree

+
+ 5

1 +

2 +

3 4

S

E + S

(S) E

E + S 5

E + S1

2 E

(S)

E + S

E3 4

23

if-then-else

B S1 S2

S if B then S1 else S2

+

* 4

3 5

3 * 5 + 4

Contruction of Syntax Trees

+

- id

id num 4

pointer to a
in symbol table

pointer to c
in symbol table

24

mknode (op, left, right)
mkleaf (id,entry)
mkleaf(num, val)

Construction of Syntax Trees
using Syntax-Directed Definitions

Production Semantic Rules
E E1 + T E.nptr := mknode ('+', E1.nptr, T.nptr)

E E1 - T E.nptr := mknode ('-', E1.nptr, T.nptr)

E T E.nptr := T.nptr
T (E) T.nptr := E.nptr
T id T.nptr := mkleaf (id, id.entry)
T num T.nptr := mkleaf (num, num.val)

25

E nptr

T nptrE nptr

E

T nptr

id

T nptr

num

id

+

-

num 4id

id

+

-

pointer to a
in symbol table

pointer to c
in symbol table

Construction of Syntax Trees
using Syntax-Directed Definitions

a - 4 + c

p1:=mkleaf (id, entrya);
p2:=mkleaf (num, 4);
p3:=mknode (’-’, p1, p2);
p4:=mkleaf (id, entryc);
p5:=mknode (’+’, p3, p4);

26

a + a * (b - c) + (b - c) * d

+

*+

*

a -

b c

d

Directed Acyclic Graphs
for Expressions

• DAG – Directed Acyclic Graph

• It identifies the common sub-expressions in the expression

• The function constructing a node first checks, whether an
identical node already exists

27

Bottom-up Evaluation of The
S-Attributed Definitions

● Basic idea
● Evaluated by a bottom-up parser as the input is being

parsed
● The parser keeps the values of the synthesized attributes

associated with the grammar symbols on its stack
● When a reduction is made, the values of the new

synthesized attributes are computed from the attributes
appearing on the stack for the grammar symbols on the
right side of the reducing production

28

Bottom-up Evaluation of The
S-Attributed Definitions

• A translator for an S-attributed definition can often
be implemented with an LR-parser

• The stack is used to hold information about sub-
trees that have been parsed

• We can use extra fields in the parser stack to hold
the values of synthesized attributes

29

Attributes on the Parser Stack
Symbol Attribute

... ...
X
Y
Z
... ...

X.x
Y.y
Z.ztop

Production Code Fragment
L E n print(val[top-1])
E E

1
 + T val[ntop] := val[top-2] + val[top]

E T
T T

1
 * F val[ntop] := val[top-2] * val[top]

T F
F (E) val[ntop] := val[top-1]
F digit

A XYZ

30

Attributes on the Parser Stack
Input Stack Attributes Production

3 3
F 3
T 3

3 -
3 - 5
3 - 5

T 15
E 15

15 -
n 15 - 4
n 15 - 4
n 15 - 4
n E 19

19 -
L 19

3 * 5 + 4 n
* 5 + 4 n
* 5 + 4 n F  digit
* 5 + 4 n T  F

5 + 4 n T *
+ 4 n T * 5
+ 4 n T * F F  digit
+ 4 n T T * F
+ 4 n E T

4 n E +
E + 4
E + F F  digit
E + T T F

E E + T
E n

L E n

31

L-Attributed Definition

● A syntax-directed definition is L-attributed if each
inherited attribute of X

j
, 1£j£n, on the right side of

A®X
1
X

2
,...,X

n
 depends only on:

● the attributes of the symbols X
1
,X

2
,...,X

j-1
 to the left of X

j
 in

the production and
● the inherited attributes of A

32

L-Attributed Definition and Evaluation Order
● In L-attributed definition all the attributes can be

computed according to the depth-first visit algorithm
● Hence, in top-down parsing they can be evaluated while

parsing
● Every S-attributed syntax-directed definition is also

L-attributed

procedure dfvisit(n: node);
begin

for each child m of n,
from left to right do begin

evaluate inherited attributes of m;
dfvisit(m)

end;
evaluate synthesized attributes of n

end

procedure dfvisit(n: node);
begin

for each child m of n,
from left to right do begin

evaluate inherited attributes of m;
dfvisit(m)

end;
evaluate synthesized attributes of n

end

33

L-Attributed Definition Example
Production Semantic Rules

S B
B.ps := 10
S.ht:= B.ht

B  B1 B2

B1.ps:= B.ps

B2.ps:= B.ps

B.ht:= max(B1.ht, B2.ht)

B  B1 sub B2

B1.ps:= B.ps

B2.ps:= shrink(B.ps)

B.ht:= disp(B1.ht, B2.ht)

B  text B.ht:=text.h * B.ps

E sub 1 .val E
1

.val

34

Translation Schemes

● A context-free grammar in which attributes are
associated with the grammar symbols and semantic
actions enclosed between braces {} are inserted
within the right sides of productions

● Translation schemes is a useful notation for specifying
translation during parsing

● The type of the attributes here can be synthesized
attribute or inherited attribute

35

Rules on A Translation Scheme Design

• Some restrictions should be observed to ensure
that an attribute value is available when an action
refers to it

• The restrictions can be motivated by
L-attributed definitions

• When only synthesized attributes are needed,
construct the translation scheme by creating an
action consisting of an assignment for each
semantic rule, and placing this action at the end of
the right side of the associated production

36

Rules on A Translation Scheme Design

• E.g. Production Semantic Rule

 T  T
1
 * F T.val T

1
.val * F.val

• Yield the following production and semantic action:

 T  T
1
 * F { T.val= T

1
.val * F.val}

37

Rules on A Translation Scheme Design

● When both inherited and synthesized attributes are
needed

● An inherited attribute for a symbol on the right side of a
production must be computed in an action before that
symbol

● An action must not refer to a synthesized attribute of a
symbol to the right of the action

● A synthesized attribute for the non-terminal on the left
can only be computed after all attributes it references
have been computed.The action computing such
attributes can usually be placed at the end of the right
side of the production

38

 Translation Scheme

S  { B.ps := 10 }
B { S.ht := B.ht }

B  { B1.ps := B.ps }

B1 { B2.ps := B.ps }

B2 { B.ht := max(B1.ht, B2.ht) }

B  { B1.ps := B.ps }

B1
sub { B2.ps := shrink(B.ps) }

B2 { B.ht := disp(B1.ht, B2.ht) }

B  text { B.ht := text.h * B.ps }

39

Top-Down Translation

40

Basic Idea

• Use L-attributed definition and
translation schemes during predictive
parsing

• Extend the algorithm for eliminating
left recursion to a translation
schemes with synthesized attributes

41

Eliminating Left Recursion from a Translation Scheme
E  E1 + T {E.val = E1.val + T.val}
E  E1 - T {E.val = E1.val - T.val}
E  T {E.val = T.val}
T  (E) {T.val = E.val}
T  num {T.val = num.val}

E  E1 + T {E.val = E1.val + T.val}
E  E1 - T {E.val = E1.val - T.val}
E  T {E.val = T.val}
T  (E) {T.val = E.val}
T  num {T.val = num.val}

E  T {R.i = T.val}
 R {E.val = R.s}
R  +
 T {R1.i = R.i + T.val}
 R1 {R.s = R1.s}
R  -
 T {R1.i = R.i - T.val}
 R1 {R.s = R1.s}
R   {R.s = R.i}
T  (
 E
) {T.val = E.val}
T  num {T.val = num.val}

E  T {R.i = T.val}
 R {E.val = R.s}
R  +
 T {R1.i = R.i + T.val}
 R1 {R.s = R1.s}
R  -
 T {R1.i = R.i - T.val}
 R1 {R.s = R1.s}
R   {R.s = R.i}
T  (
 E
) {T.val = E.val}
T  num {T.val = num.val}

42

Eliminating Left Recursion from a Translation Scheme

E

T.val=9 R.i=9

Num.val=9 - T.val=5 R.i=4

Num.val=2 

Num.val=5 + T.val=2 R.i=6

E  T {R.i = T.val}
 R {E.val = R.s}
R  +
 T {R1.i = R.i + T.val}
 R1 {R.s = R1.s}
R  -
 T {R1.i = R.i - T.val}
 R1 {R.s = R1.s}
R   {R.s = R.i}
T  (
 E
) {T.val = E.val}
T  num {T.val = num.val}

E  T {R.i = T.val}
 R {E.val = R.s}
R  +
 T {R1.i = R.i + T.val}
 R1 {R.s = R1.s}
R  -
 T {R1.i = R.i - T.val}
 R1 {R.s = R1.s}
R   {R.s = R.i}
T  (
 E
) {T.val = E.val}
T  num {T.val = num.val}

43

Eliminating Left Recursion from a Translation Scheme

• Algorithm for eliminating left recursion from a
translation scheme with synthesized attribute

• Suppose we have the following translation scheme
A A

1
Y { A.a = g(A

1
.a, Y.y) }

A X { A.a = f(X.x) }

• We assume here each grammar symbol has a
synthesized attribute, and f and g are arbitrary
functions.

44

Eliminating Left Recursion from a Translation Scheme

• After eliminating left recursion:
A  XR

R  YR | 

• Taking the semantic actions into account, the
transformed scheme becomes:
A  X { R.i = f(X.x) }

R { A.a = R.s }

R  Y { R
1
.i = g(R.i, Y.y) }

R
1

{ R.s = R
1
.s }

R   { R.s = R.i }

45

Eliminating Left Recursion from a Translation Scheme

A.a=g(g(f(X.x),Y1.y),Y2.y)

A.a=g(f(X.x),Y1.y) Y2

A.a=f(X.x) Y1

X

One way of computing an attribute value

46

Eliminating Left Recursion from a Translation Scheme

A

X R.i=f(X.x)

Y1 R.i=g(f(X.x),Y1.y)



Y2 R.i=g(g(f(X.x),Y1.y),Y2.y)

Another way of computing an attribute value

47

Bottom-Up Translation

48

Bottom-up Evaluation of Inherited Attributes
● Implement L-attributed definitions in the framework

of bottom-up parsing
● Use a transformation that makes all embedded

actions in a translation scheme occur at the right
ends of their productions

● Insert new marker non-terminals generating  into the
base grammar

● Replace each embedded action by a distinct marker
non-terminal M and attach the action to the end of the
production M

● LL(1) grammar after this transformation will still be
LL(1), but LR(1) grammar may no longer be LR(1)

49

Removing Embedded Actions
from Translation Schemes

E  T R
R  + T { print('+')} R | - T {print('-')} R | 
T  num {print(num.val)}

E  T R
R  + T { print('+')} R | - T {print('-')} R | 
T  num {print(num.val)}

E  T R
R  + T M R | - T N R | 
T  num {print(num.val)}
M   { print('+')}
N   { print('-')}

E  T R
R  + T M R | - T N R | 
T  num {print(num.val)}
M   { print('+')}
N   { print('-')}

50

Inherited Attributes and
Bottom-Up Translation

D  T { L.in := T.type}
L

T  int { T.type := integer }
T  real { T.type := real }
L  { L1.in := L.in }

L1 , id { addtype(id.entry, L.in) }
L  id { addtype(id.entry, L.in) }

T

D

L

L , r

L , q

p

real
type

in

in

in

For this grammar, always L.in = T.type

51

Inherited Attributes and
Bottom-Up Translation

D  T { L.in := T.type}
L

T  int { T.type := integer }
T  real { T.type := real }
L  { L1.in := L.in }

L1 , id { addtype(id.entry, L.in) }
L  id { addtype(id.entry, L.in) }

D  TLD
L  L , idT L

T L , r
rT L ,

L  L , id, rT L
, rT L , q
q , rT L ,

L  id, q , rT L
, q , rT p

T  realp , q , rT
p , q , rreal
real p , q , r-

ProductionInputState

T is always immediately under L at the parser stack

52

Inherited Attributes and
Bottom-Up Translation

Production Code Fragment
D T L ;
T int val[ntop] := integer
T real val[ntop] := real
L L , id addtype(val[top], val[top-3])
L id addtype(val[top], val[top-1])

D  T { L.in := T.type}
L

T  int { T.type := integer }
T  real { T.type := real }
L  { L1.in := L.in }

L1 , id { addtype(id.entry, L.in) }
L  id { addtype(id.entry, L.in) }

53

Inherited Attributes - Application
of Marker Nonterminal

S  aAC C.i := A.s
S  bABC C.i := A.s
C  c C.s:=g(C.i)

S  aAC C.i := A.s
S  bABC C.i := A.s
C  c C.s:=g(C.i)

S  aAC C.i := A.s
S  bABMC M.i := A.s; C.i := M.s
C  c C.s := g(C.i)
M   M.s := M.i

S  aAC C.i := A.s
S  bABMC M.i := A.s; C.i := M.s
C  c C.s := g(C.i)
M   M.s := M.i

S

Cb A B
s i

S

Cb A B
s i

M
i s

є

54

Application of Marker Nonterminal-
General Case

S  aAC C.i := f(A.s)S  aAC C.i := f(A.s)

S  aANC N.i := A.s; C.i := N.s
N   N.s := f(N.i)

S  aANC N.i := A.s; C.i := N.s
N   N.s := f(N.i)

55

Bottom-Up Processing of
L-Attributed Definition

S  L B B.ps := L.s
S.ht := B.ht

L   L.s := 10
B  B1 M B2 B1.ps := B.ps

M.i := B.ps
B2.ps := M.s
B.ht := max(B1.ht, B2.ht)

B  B1 sub N B2 B1.ps := B.ps
N.i := B.ps
B2.ps := N.s
B.ht := disp(B1.ht, B2.ht)

B  text B.ht := text.h * B.ps
M   M.s := M.i
N   N.s := shrink(N.i)

56

Replacing Inherited by Synthesized Attributes

D L:T {L.type=T.type}
T  integer|char {T.type=integer|char}
L  L1,id {L1.type=L.type; addtype(id.entry,L.type)
L  id {addtype(id.entry,L.type)}

D L:T {L.type=T.type}
T  integer|char {T.type=integer|char}
L  L1,id {L1.type=L.type; addtype(id.entry,L.type)
L  id {addtype(id.entry,L.type)}

D  id L {addtype(id.entry,L.type)}
L  ,id L1 {L.type=L1.type; addtype(id.entry,L1.type)}
L  :T {L.type=T.type}
T  integer|char {T.type=integer|char}

D  id L {addtype(id.entry,L.type)}
L  ,id L1 {L.type=L1.type; addtype(id.entry,L1.type)}
L  :T {L.type=T.type}
T  integer|char {T.type=integer|char}

• Now, the type can be carried along as a synthesized
attribute L.type. As each identifier is generated by L, its type
can be entered into the symbol table

