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Syntax-Directed Translation
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Basic Idea

● Guided by context-free grammar
● Associate information with a programming 

language construction by attaching 
attributes to the grammar symbols 
representing the construction

● Values for attributes are computed by 
“semantic rules ”associated with the 
grammar productions
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Two Notations for Associating 
Semantic Rules with Productions

● Syntax-directed definitions    
● High-level specifications for translations
● Hide implementation details
● No need to specify explicitly the order in 
which translation take place
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Two Notations for Associating 
Semantic Rules with Productions

● Translation schemes    
● Indicate the order in which semantic rules 
are to be evaluated

● Allow some implementation details to be 
shown
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Conceptual View of Syntax-
Directed Translation

input
string

syntax
tree

dependency
graph

evaluation order
for semantic rules

● Notes:
● Evaluation of the semantic rules may generate code, 

save information in a symbol table, issue error 
messages, or perform any other activities

● Special cases of syntax-directed definitions can be 
implemented in a single pass by evaluating semantic 
rules during parsing, without explicitly constructing a 
parse tree or a graph showing dependencies between 
attributes
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Syntax-Directed Definitions

● Syntax-directed definition
● A generalization of a context-free grammar in which each 

grammar symbol has an associated set of attributes
● Attribute

● Represent anything we choose: a string, a number, a 
type, a memory location, etc.

● The value of an attribute at a parse-tree node is 
defined by a semantic rule associated with the 
production used at that node
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Synthesized and Inherited Attributes

● In a syntax-directed definition, each grammar 
production A® has associated with it a set of 
semantic rules of the form 
b:=f(c

1
,c

2
,...c

k
), where f is a function, and either

● b is a synthesized attribute of A, and c
1
,c

2
,...c

k
 are 

attributes belonging to the grammar symbols of the 
production, or

● b is an inherited attribute of one of the grammar symbols 
on the right side of the production, and c

1
,c

2
,...c

k
 are 

attributes belonging to the grammar symbols of the 
production
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Synthesized and Inherited Attributes

● Synthesized attribute
● The value of a synthesized attribute at a node is 

computed from the values of attributes at the 
children of that node in the parse tree

● Inherited attribute
● The value of an inherited attribute is computed 

from the values of attributes at the siblings and 
parent of that node
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Annotated Parse Tree

• A parse tree showing the values of 
attributes at each node

• The process of computing the attribute 
values at the nodes is called annotating 
or decorating the parse tree

• Values for attributes of terminals are 
usually supplied by the lexical analyzer
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S-Attributed Definition

Production Semantic Rules
print(E.val)

E.val := T.val

T.val := F.val
F.val := E.val

L E n
E E1+ T E.val:=E1.val + T.val

E T
T T1 * F T.val := T1.val * F.val

T F
F ( E )
F digit F.val := digit.lexval

L

n

E.val = 19

+ T.val = 4E.val = 15

T.val = 15

*T.val = 3 F.val = 5

F.val = 3

digit.lexval = 3

digit.lexval = 5

F.val = 4

digit.lexval = 4

3 * 5 + 4 n

A syntax-directed 
definition that uses 
synthesized attributes 
exclusively
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Inherited Attributes

● Expressing the dependence of a programming 
language construction on the context in which it 
appears

● By keeping track of the context whether an identifier 
appears on the left or right side of an assignment context 
we can  decide whether the address or the value of the 
identifier is needed

● Although it is always possible to rewrite a syntax-directed 
definition to use only synthesized attributes, it is often 
natural to use syntax-directed definition with inherited 
attributes
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Example of Non-S-Attributed Definition
Production Semantic Rules

D  T L L.in := T.type
T  int T.type := integer
T  real T.type := real

L  L1 , id
L1.in := L.in

addtype(id.entry, L.in)
L  id addtype(id.entry, L.in)

D

T.type = real L.in = real

real
L.in = real , id3

L.in = real , id2

id1
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Attribute Grammar

• A syntax-directed definition in which the 
functions in semantic rules cannot have 
side effects
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Dependency Graph

● A directed graph that represents dependencies 
between attributes set up by the semantic rules

● Notes:
● From the dependency graph, we can derive an 

evaluation order for the semantic rules
● Evaluation of the semantic rules defines the values of the 

attributes at the nodes in the parse tree
● A semantic rule may have side effects, e,g, printing a 

value or updating a global variable
● For procedure calls with side effects we introduce a 

dummy synthesized attribute
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E

E1 E2+

val

valval

E E1 + E2 E.val := E1.val + E2.val

Dependency Graph
for each node n in the parse tree do

for each attribute a of the grammar symbol at n do
construct a node in the dependency graph for a;

for each node n in the parse tree do
for each semantic rule b:=f(c

1
,c

2
,...c

k
) associated with the production used at n do

for i := 1 to k do
construct and edge from the node for c

i 
to the node for b

i

for each node n in the parse tree do
for each attribute a of the grammar symbol at n do

construct a node in the dependency graph for a;
for each node n in the parse tree do

for each semantic rule b:=f(c
1
,c

2
,...c

k
) associated with the production used at n do

for i := 1 to k do
construct and edge from the node for c

i 
to the node for b

i

• The three nodes of the dependency graph marked by • represent the 
synthesized attributes E.val, E

1
.val, and E

2
.val at the corresponding 

nodes in the parse tree

• The dotted lines represent the parse tree and are not part of the 
dependency graph
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Acyclic Dependency Graphs for Parse Trees

A  X Y A.a := f(X.x, Y.y)

X.x := f(A.a, Y.y)

Y.y := f(A.a, X.x)

A.a

X.x Y.y

A.a

X.x Y.y

A.a

X.x Y.y

Direction of

value dependence
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Dependency Graphs with Cycles?

• Edges in the dependence graph show the 
evaluation order for attribute values

• Dependency graphs cannot be cyclic

A.a := f(X.x) 
X.x := f(Y.y)
Y.y := f(A.a)

A.a

X.x Y.y

Error: cyclic dependence
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Evaluation Order 

● Basic idea in the topological sort of a graph
● Topological sort of a graph

● Any ordering m
1
,m

2
,…,m

k
 of the nodes of the graph such 

that edges go from nodes earlier in the ordering to later 
nodes

● From a  topological sort of a dependency graph, we 
obtain an evaluation order for the semantic rules
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D

T L

real
L , id3

L , id2

id1

4
type

in 5 6

3 entry

2 entry

1 entry

10in 9

in 7 8

a4:=real;
a5:=a4;
addtype(id3.entry, a5);
a7:=a5;
addtype(id2.entry, a7);
a9:=a7;
addtype(id1.entry, a9);

a4:=real;
a5:=a4;
addtype(id3.entry, a5);
a7:=a5;
addtype(id2.entry, a7);
a9:=a7;
addtype(id1.entry, a9);

Dependency Graph

Production Semantic Rules
L.in := T.type
T.type := integer
T.type := real

D  T L
T  int
T  real

L  L1 , id
L1.in := L.in

addtype(id.entry, L.in)
L  id addtype(id.entry, L.in)
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Evaluation Order
● Parse-tree methods

● Obtain an evaluation order from a topological sort of the 
dependency graph constructed from the parse tree for each 
input

● It will fail if the dependency graph for the particular parse tree 
has a cycle

● Rule-based methods
● At compiler-construction time, the semantic rules associated 

with productions are analyzed
● For each production, the order is predetermined

● Oblivious methods
● An evaluation order is chosen without considering the 

semantic rules
● It restricts the class of syntax-directed definitions that can be 

implemented
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Evaluation Order

• Rule-based and oblivious methods need 
not explicitly construct the dependency 
graph at compile time, so they can be 
more efficient in their use of compiler time 
and space
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Abstract Syntax Tree (AST)

• Derivation = sequence of applied 
productions

• S => E+S => 1+S => 1+E => 1+2

• Parse tree = graph representation of 
a derivation

• Doesn’t capture the order of applying 
the productions

• AST discards unnecessary 
information from the parse tree

• In an AST, operators and keywords 
do not appear as leaves, but rather 
are associated with the interior node 
that would be parent of those leaves 
in the parse tree

+
+ 5

1 +

2 +

3 4

S

E + S

(  S  ) E

E  +  S 5

E  +  S1

2 E

(  S  )

E  +  S

E3 4
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if-then-else

B S1 S2

S if B then S1 else S2

+

* 4

3 5

3 * 5 + 4

Contruction of Syntax Trees

+

- id

id num 4

pointer to a
in symbol table

pointer to c
in symbol table
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mknode (op, left, right)
mkleaf (id,entry)
mkleaf(num, val)

Construction of Syntax Trees
using Syntax-Directed Definitions

Production Semantic Rules
E  E1 + T E.nptr := mknode ('+', E1.nptr, T.nptr)

E  E1 - T E.nptr := mknode ('-', E1.nptr, T.nptr)

E  T E.nptr := T.nptr
T  ( E ) T.nptr := E.nptr
T  id T.nptr := mkleaf (id, id.entry)
T  num T.nptr := mkleaf (num, num.val)
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E nptr

T   nptrE  nptr

E

T       nptr

id

T    nptr

num

id

+

-

num 4id

id

+

-

pointer to a
in symbol table

pointer to c
in symbol table

Construction of Syntax Trees
using Syntax-Directed Definitions

a - 4 + c

p1:=mkleaf (id, entrya);
p2:=mkleaf (num, 4);
p3:=mknode (’-’, p1, p2);
p4:=mkleaf (id, entryc);
p5:=mknode (’+’, p3, p4);
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a + a * ( b - c ) + ( b - c ) * d

+

*+

*

a -

b c

d

Directed Acyclic Graphs
for Expressions

• DAG – Directed Acyclic Graph

• It identifies the common sub-expressions in the expression

• The function constructing a node first checks, whether an 
identical node already exists
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Bottom-up Evaluation of The 
S-Attributed Definitions

● Basic idea
● Evaluated by a bottom-up parser as the input is being 

parsed
● The parser keeps the values of the synthesized attributes 

associated with the grammar symbols on its stack
● When a reduction is made, the values of the new 

synthesized attributes are computed from the attributes 
appearing on the stack for the grammar symbols on the 
right side of the reducing production
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Bottom-up Evaluation of The 
S-Attributed Definitions

• A translator for an S-attributed definition can often 
be implemented with an LR-parser 

• The stack is used to hold information about sub-
trees that have been parsed

• We can use extra fields in the parser stack to hold 
the values of synthesized attributes
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Attributes on the Parser Stack
Symbol Attribute

... ...
X
Y
Z
... ...

X.x
Y.y
Z.ztop

Production Code Fragment
L E n print(val[top-1])
E E

1
 + T val[ntop] := val[top-2] + val[top]

E T
T T

1
 * F val[ntop] := val[top-2] * val[top]

T F
F (E) val[ntop] := val[top-1]
F digit

A XYZ
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Attributes on the Parser Stack
Input Stack Attributes Production

3 3
F 3
T 3

3 -
3 - 5
3 - 5

T 15
E 15

15 -
n 15 - 4
n 15 - 4
n 15 - 4
n E 19

19 -
L 19

3 * 5 + 4 n
* 5 + 4 n
* 5 + 4 n F   digit
* 5 + 4 n T   F

5 + 4 n T *
+ 4 n T * 5
+ 4 n T * F F   digit
+ 4 n T  T * F
+ 4 n E  T

4 n E +
E + 4
E + F F   digit
E + T T  F

E  E + T
E n

L E n
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L-Attributed Definition

● A syntax-directed definition is L-attributed if each 
inherited attribute of X

j
, 1£j£n, on the right side of 

A®X
1
X

2
,...,X

n
 depends only on:

● the attributes of the symbols X
1
,X

2
,...,X

j-1
 to the left of X

j
 in 

the production and
● the inherited attributes of A
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L-Attributed Definition and Evaluation Order
● In L-attributed definition all the attributes can be 

computed according to the depth-first visit algorithm
● Hence, in top-down parsing they can be evaluated while 

parsing
● Every S-attributed syntax-directed definition is also 

L-attributed

procedure dfvisit(n: node);
begin

for each child m of n,
from left to right do begin

evaluate inherited attributes of m;
dfvisit(m)

end;
evaluate synthesized attributes of n

end

procedure dfvisit(n: node);
begin

for each child m of n,
from left to right do begin

evaluate inherited attributes of m;
dfvisit(m)

end;
evaluate synthesized attributes of n

end
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L-Attributed Definition Example
Production Semantic Rules

S  B
B.ps := 10
S.ht:= B.ht

B   B1 B2

B1.ps:= B.ps

B2.ps:= B.ps

B.ht:= max(B1.ht, B2.ht)

B   B1 sub B2

B1.ps:= B.ps

B2.ps:= shrink(B.ps)

B.ht:= disp(B1.ht, B2.ht)

B   text B.ht:=text.h * B.ps

E sub 1 .val E
1

.val
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Translation Schemes

● A context-free grammar in which attributes are 
associated with the grammar symbols and semantic 
actions enclosed between braces {} are inserted 
within the right sides of productions 

● Translation schemes is a useful notation for specifying 
translation during parsing

● The type of the attributes here can be synthesized 
attribute or inherited attribute
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Rules on A Translation Scheme Design

• Some restrictions should be observed to ensure 
that an attribute value is available when an action 
refers to it

• The restrictions can be motivated by 
L-attributed definitions

• When only synthesized attributes are needed, 
construct the translation scheme by creating an 
action consisting of an assignment for each 
semantic rule, and placing this action at the end of 
the right side of the associated production
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Rules on A Translation Scheme Design

• E.g.   Production          Semantic Rule

            T  T
1
 * F          T.val T

1
.val * F.val

• Yield the following production and semantic action:

            T  T
1
 * F   { T.val= T

1
.val * F.val}
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Rules on A Translation Scheme Design

● When both inherited and synthesized attributes are 
needed

● An inherited attribute for a symbol on the right side of a 
production must be computed in an action before that 
symbol

● An action must not refer to a  synthesized attribute of a 
symbol to the right of the action

● A synthesized attribute for the non-terminal on the left 
can only be computed after all attributes it references 
have been computed.The action computing such 
attributes can usually be placed at the end of the right 
side of the production
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 Translation Scheme

S  { B.ps := 10 }
B { S.ht := B.ht }

B  { B1.ps := B.ps }

B1 { B2.ps := B.ps }

B2 { B.ht := max(B1.ht, B2.ht) }

B  { B1.ps := B.ps }

B1
sub { B2.ps := shrink(B.ps) }

B2 { B.ht := disp(B1.ht, B2.ht) }

B  text { B.ht := text.h * B.ps }
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Top-Down Translation
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Basic Idea

• Use L-attributed definition and 
translation schemes during predictive 
parsing

• Extend the algorithm for eliminating 
left recursion to a translation 
schemes with synthesized attributes
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Eliminating Left Recursion from a Translation Scheme
E  E1 + T  {E.val = E1.val + T.val}
E  E1 - T  {E.val = E1.val - T.val}
E  T       {E.val = T.val}
T  (E)     {T.val = E.val}
T  num     {T.val = num.val}

E  E1 + T  {E.val = E1.val + T.val}
E  E1 - T  {E.val = E1.val - T.val}
E  T       {E.val = T.val}
T  (E)     {T.val = E.val}
T  num     {T.val = num.val}

E  T       {R.i = T.val}
        R    {E.val = R.s}
R  +
        T    {R1.i = R.i + T.val}
        R1   {R.s = R1.s}
R  -
        T    {R1.i = R.i - T.val}
        R1   {R.s = R1.s}
R       {R.s = R.i}
T  (
        E     
        )    {T.val = E.val}
T  num    {T.val = num.val}

E  T       {R.i = T.val}
        R    {E.val = R.s}
R  +
        T    {R1.i = R.i + T.val}
        R1   {R.s = R1.s}
R  -
        T    {R1.i = R.i - T.val}
        R1   {R.s = R1.s}
R       {R.s = R.i}
T  (
        E     
        )    {T.val = E.val}
T  num    {T.val = num.val}
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Eliminating Left Recursion from a Translation Scheme

E

T.val=9          R.i=9

Num.val=9        -   T.val=5          R.i=4

Num.val=2              

Num.val=5           +  T.val=2        R.i=6

E  T       {R.i = T.val}
        R    {E.val = R.s}
R  +
        T    {R1.i = R.i + T.val}
        R1   {R.s = R1.s}
R  -
        T    {R1.i = R.i - T.val}
        R1   {R.s = R1.s}
R       {R.s = R.i}
T  (
        E     
        )    {T.val = E.val}
T  num    {T.val = num.val}

E  T       {R.i = T.val}
        R    {E.val = R.s}
R  +
        T    {R1.i = R.i + T.val}
        R1   {R.s = R1.s}
R  -
        T    {R1.i = R.i - T.val}
        R1   {R.s = R1.s}
R       {R.s = R.i}
T  (
        E     
        )    {T.val = E.val}
T  num    {T.val = num.val}
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Eliminating Left Recursion from a Translation Scheme

• Algorithm for eliminating left recursion from a 
translation scheme with synthesized attribute

• Suppose we have the following translation scheme
A A

1
Y  { A.a = g(A

1
.a, Y.y) }

A X      { A.a = f(X.x) }

• We assume here each grammar symbol has a 
synthesized attribute, and f and g are arbitrary 
functions.



44

Eliminating Left Recursion from a Translation Scheme

• After eliminating left recursion:
A  XR

R  YR | 

• Taking the semantic actions into account, the 
transformed scheme becomes:
A  X { R.i = f(X.x) }

R { A.a = R.s }

R  Y { R
1
.i = g(R.i, Y.y) }

R
1

{ R.s = R
1
.s }

R   { R.s = R.i }
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Eliminating Left Recursion from a Translation Scheme

A.a=g(g(f(X.x),Y1.y),Y2.y)

A.a=g(f(X.x),Y1.y)                    Y2

A.a=f(X.x)                    Y1

X

One way of computing an attribute value
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Eliminating Left Recursion from a Translation Scheme

A

X                    R.i=f(X.x)

Y1               R.i=g(f(X.x),Y1.y)



Y2         R.i=g(g(f(X.x),Y1.y),Y2.y)

Another way of computing an attribute value
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Bottom-Up Translation
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Bottom-up Evaluation of Inherited Attributes
● Implement L-attributed definitions in the framework 

of bottom-up parsing
● Use a transformation that makes all embedded 

actions in a translation scheme occur at the right 
ends of their productions

● Insert new marker non-terminals generating  into the 
base grammar

● Replace each embedded action by a distinct marker 
non-terminal M and attach the action to the end of the 
production M 

● LL(1) grammar after this transformation will still be 
LL(1), but LR(1) grammar may no longer be LR(1)
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Removing Embedded Actions 
from Translation Schemes

E  T R
R  + T { print('+')} R | - T {print('-')} R | 
T  num {print(num.val)}

E  T R
R  + T { print('+')} R | - T {print('-')} R | 
T  num {print(num.val)}

E  T R
R  + T M R | - T N R | 
T  num {print(num.val)}
M   { print('+')}
N   { print('-')}

E  T R
R  + T M R | - T N R | 
T  num {print(num.val)}
M   { print('+')}
N   { print('-')}
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Inherited Attributes and 
Bottom-Up Translation

D  T { L.in := T.type}
L

T  int { T.type := integer }
T  real { T.type := real }
L  { L1.in := L.in }

L1 , id { addtype(id.entry, L.in) }
L  id { addtype(id.entry, L.in) }

T

D

L

L , r

L , q

p

real
type

in

in

in

For this grammar, always L.in = T.type
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Inherited Attributes and 
Bottom-Up Translation

D  T { L.in := T.type}
L

T  int { T.type := integer }
T  real { T.type := real }
L  { L1.in := L.in }

L1 , id { addtype(id.entry, L.in) }
L  id { addtype(id.entry, L.in) }

D  TLD
L  L , idT L

T L , r
rT L ,

L  L , id, rT L
, rT L , q
q , rT L ,

L  id, q , rT L
, q , rT p

T  realp , q , rT
p , q , rreal
real p , q , r-

ProductionInputState

T is always immediately under L at the parser stack
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Inherited Attributes and 
Bottom-Up Translation

Production Code Fragment
D T L ;
T int val[ntop] := integer
T real val[ntop] := real
L L , id addtype(val[top], val[top-3])
L id addtype(val[top], val[top-1])

D  T { L.in := T.type}
L

T  int { T.type := integer }
T  real { T.type := real }
L  { L1.in := L.in }

L1 , id { addtype(id.entry, L.in) }
L  id { addtype(id.entry, L.in) }
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Inherited Attributes - Application 
of Marker Nonterminal

S  aAC C.i := A.s
S  bABC C.i := A.s
C  c C.s:=g(C.i)

S  aAC C.i := A.s
S  bABC C.i := A.s
C  c C.s:=g(C.i)

S  aAC C.i := A.s
S  bABMC M.i := A.s; C.i := M.s
C  c C.s := g(C.i)
M   M.s := M.i

S  aAC C.i := A.s
S  bABMC M.i := A.s; C.i := M.s
C  c C.s := g(C.i)
M   M.s := M.i

S

Cb A B
s i

S

Cb A B
s i

M
i s

є
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Application of Marker Nonterminal- 
General Case

S  aAC C.i := f(A.s)S  aAC C.i := f(A.s)

S  aANC N.i := A.s; C.i := N.s
N   N.s := f(N.i)

S  aANC N.i := A.s; C.i := N.s
N   N.s := f(N.i)
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Bottom-Up Processing of 
L-Attributed Definition

S  L B B.ps := L.s
S.ht := B.ht

L   L.s := 10
B  B1 M B2 B1.ps := B.ps

M.i := B.ps
B2.ps := M.s
B.ht := max(B1.ht, B2.ht)

B  B1 sub N B2 B1.ps := B.ps
N.i := B.ps
B2.ps := N.s
B.ht := disp(B1.ht, B2.ht)

B  text B.ht := text.h * B.ps
M   M.s := M.i
N   N.s := shrink(N.i)
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D L:T  {L.type=T.type}
T  integer|char {T.type=integer|char}
L  L1,id {L1.type=L.type; addtype(id.entry,L.type)
L  id {addtype(id.entry,L.type)}

D L:T  {L.type=T.type}
T  integer|char {T.type=integer|char}
L  L1,id {L1.type=L.type; addtype(id.entry,L.type)
L  id {addtype(id.entry,L.type)}

D  id L {addtype(id.entry,L.type)}
L  ,id L1 {L.type=L1.type; addtype(id.entry,L1.type)} 
L  :T {L.type=T.type}
T  integer|char {T.type=integer|char}

D  id L {addtype(id.entry,L.type)}
L  ,id L1 {L.type=L1.type; addtype(id.entry,L1.type)} 
L  :T {L.type=T.type}
T  integer|char {T.type=integer|char}

• Now, the type can be carried along as a synthesized 
attribute L.type. As each identifier is generated by L, its type 
can be entered into the symbol table


