
1

IceIce

Client-Side Slice-to-C++ Mapping

2

Client-Side Slice-to-C++ MappingClient-Side Slice-to-C++ Mapping

● The client-side Slice-to-C++ mapping defines how Slice data
types are translated to C++ types, and how clients invoke
operations, pass parameters, and handle errors.

● The mapping is free from the potential pitfalls of memory
management: all types are self-managed and automatically
clean up when instances go out of scope.
● You cannot accidentally introduce a memory leak by:

● Ignoring the return value of an operation invocation
● Forgetting to deallocate memory that was allocated by a called

operation.
● The C++ mapping is fully thread-safe.

● You must still synchronize access to data from different threads

3

Mapping for IdentifiersMapping for Identifiers

● Slice identifiers map to an identical C++ identifier
● The Slice identifier Clock becomes the C++ identifier Clock.

● If a Slice identifier is the same as a C++ keyword, the
corresponding C++ identifier is prefixed with _cpp_. For
example, the Slice identifier while is mapped as
_cpp_while.

● A single Slice identifier often results in several C++
identifiers.
● For a Slice interface named Foo, the generated C++ code uses

the identifiers Foo and FooPrx (among others).
● If the interface has the name while, the generated identifiers

are _cpp_while and whilePrx (not _cpp_whilePrx).
● Te prefix is applied only to those generated identifiers that actually

require it.

4

Mapping for ModulesMapping for Modules
● Slice modules map to C++ namespaces. The mapping

preserves the nesting of the Slice definitions.
module M1 {
 module M2 {
 // ...
 };
 // ...
};
// ...
module M1 { // Reopen M1
 // ...
};

● This definition maps to the corresponding C++ definition:
namespace M1 {
 namespace M2 {
 // ...
 }
 // ...
}
// ...
namespace M1 { // Reopen M1
 // ...
}

● If a Slice module is reopened, the corresponding C++
namespace is reopened as well.

5

Mapping for Simple Built-In TypesMapping for Simple Built-In Types
Slice C++
bool bool
byte Ice::Byte
short Ice::Short

int Ice::Int
long Ice::Long
float Ice::Float

double Ice::Double
string std::string

● Slice bool and string map to C++ bool and std::string.
● The remaining built-in Slice types map to C++ type definitions instead of C++

native types.
● This allows the Ice run time to provide a definition as appropriate for each target

architecture.
● Ice::Int might be defined as long on one architecture and as int on another.)

● Ice::Byte is a typedef for unsigned char.
● This guarantees that byte values are always in the range 0..255.

● All the basic types are guaranteed to be distinct C++ types, that is, you can
safely overload functions that differ in only the types in the table above

6

Mapping for EnumerationsMapping for Enumerations

● Enumerations map to the corresponding enumerations
in C++:

● The Slice definition:
● enum Fruit { Apple, Pear, Orange };

● maps to:
● enum Fruit { Apple, Pear, Orange };

7

Mapping for StructuresMapping for Structures
● By default, Slice structures map to C++ structures with the

same name. For each Slice data member, the C++ structure
contains a public data member.
struct Employee {
 long number;
 string firstName;
 string lastName;
};

● The Slice-to-C++ compiler generates the following definition
for this structure:
struct Employee {
 Ice::Long number;
 std::string firstName;
 std::string lastName;
 bool operator==(const Employee&) const;
 bool operator!=(const Employee&) const;
 bool operator<(const Employee&) const;
 bool operator<=(const Employee&) const;
 bool operator>(const Employee&) const;
 bool operator>=(const Employee&) const;
};

8

Mapping for StructuresMapping for Structures

● The comparison operators treat the members of a structure
as sort order criteria: the first member is considered the first
criterion, the second member the second criterion, and so
on.

● The comparison operators are provided to allow the use of
structures as the key type of Slice dictionaries.

● Copy construction and assignment always have deep-copy
semantics.
● You can freely assign structures or structure members to each

other without having to worry about memory management.

9

Mapping for SequencesMapping for Sequences

● The sequences map by default to STL vectors. From the
Slice definition:
● sequence<Fruit> FruitPlatter;

● The Slice compiler generates the following C++ definition:
● typedef std::vector<Fruit> FruitPlatter;

10

Mapping for DictionariesMapping for Dictionaries

● A Slice dictionary maps to an STL map. Slice code:
● dictionary<long, Employee> EmployeeMap;

● will result in the following C++ code being generated:
● typedef std::map<Ice::Long, Employee>
EmployeeMap;

11

Mapping for ConstantsMapping for Constants
● Slice constant definitions map to corresponding C++

constant definitions:
const bool AppendByDefault = true;
const byte LowerNibble = 0x0f;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;
const double PI = 3.1416;
enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;

● will map to:
const bool AppendByDefault = true;
const Ice::Byte LowerNibble = 15;
const std::string Advice = "Don't Panic!";
const Ice::Short TheAnswer = 42;
const Ice::Double PI = 3.1416;
enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;

● All constants are initialized directly in the header file, so they
are compile-time constants and can be used in contexts
where a compile-time constant expression is required.

12

Mapping for ExceptionsMapping for Exceptions
● Each Slice exception is mapped to a C++ class with the

same name.
exception GenericError {
 string reason;
};
exception BadTimeVal extends GenericError {};

● These exception definitions map as follows:
class GenericError: public Ice::UserException {
 public:
 std::string reason;
 GenericError() {}
 explicit GenericError(const string&);
 virtual const std::string& ice_name() const;
 virtual Ice::Exception* ice_clone() const;
 virtual void ice_throw() const;
 // Other member functions here...
};
class BadTimeVal: public GenericError {
public:
 BadTimeVal() {}
 explicit BadTimeVal(const string&);
 virtual const std::string& ice_name() const;
 virtual Ice::Exception* ice_clone() const;
 virtual void ice_throw() const;
 // Other member functions here...
};

13

Mapping for ExceptionsMapping for Exceptions

● For each exception member, the corresponding class
contains a public data member.

● The inheritance structure of the Slice exceptions is
preserved for the generated classes, so BadTimeVal
inherits from GenericError.

● Each exception has three additional member functions:
● ice_name

● Returns the name of the exception.
● ice_clone

● Allows you to polymorphically clone an exception.
● ice_throw

● Allows you to throw an exception without knowing its precise run-
time type.

14

Mapping for ExceptionsMapping for Exceptions

● Each exception has a default constructor. This constructor performs
memberwise initialization;
● for simple built-in types, such as integers, the constructor performs no

initialization,
● complex types, such as strings, sequences, and dictionaries are initialized

by their respective default constructors.
● An exception also has a second constructor that accepts one

argument for each exception member.
● This constructor allows you to instantiate and initialize an exception in a

single statement, instead of having to first instantiate the exception and
then assign to its members.

● For derived exceptions, the constructor accepts one argument for each
base exception member, plus one argument for each derived exception
member, in base-to-derived order.

● All user exceptions ultimately inherit from Ice::UserException. In
turn, Ice::UserException inherits from Ice::Exception (which
is an alias for IceUtil::Exception).

15

Mapping for Run-Time ExceptionsMapping for Run-Time Exceptions
● The Ice run time throws run-time exceptions for a number of pre-defined error

conditions.
● All run-time exceptions directly or indirectly derive from Ice::LocalException (which, in

turn, derives from Ice::Exception).
● Ice::LocalException has the usual member functions (ice_name, ice_clone,
ice_throw, and (inherited from Ice::Exception), ice_print, ice_file, and
ice_line).

● Ice::Exception
● This is the root of the complete inheritance tree. Catching Ice::Exception catches both

user and run-time exceptions.
● Ice::UserException This is the root exception for all user exceptions. Catching
Ice::UserException catches all user exceptions (but not run-time exceptions).

● Ice::LocalException This is the root exception for all run-time exceptions.
Catching Ice::LocalException catches all run-time exceptions (but not user
exceptions).

● Ice::TimeoutException
● This is the base exception for both operation-invocation and connection-establishment

timeouts.
● Ice::ConnectTimeoutException

● This exception is raised when the initial attempt to establish a connection to a server times
out.

16

Mapping for InterfacesMapping for Interfaces

● The mapping of Slice interfaces revolves around the idea
that, to invoke a remote operation, you call a member
function on a local class instance that represents the remote
object.

● This makes the mapping easy and intuitive to use because,
for all intents and purposes (apart from error semantics),
making a remote procedure call is no different from making
a local procedure call.

17

Proxy Classes and Proxy HandlesProxy Classes and Proxy Handles
● On the client side, interfaces map to classes with member functions that correspond

to the operations on those interfaces. From the following interface:
module M {
 interface Simple {
 void op();
 };
};

● The Slice compiler generates the following definitions for use by the client:
namespace IceProxy {
 namespace M {
 class Simple;
 }
}
namespace M {
 class Simple;
 typedef IceInternal::ProxyHandle< ::IceProxy::M::Simple> SimplePrx;
 typedef IceInternal::Handle< ::M::Simple> SimplePtr;
}
namespace IceProxy {
 namespace M {
 class Simple : public virtual IceProxy::Ice::Object {
 public:
 typedef ::M::SimplePrx ProxyType;
 typedef ::M::SimplePtr PointerType;
 void op();
 void op(const Ice::Context&);
 // ...
 };
 };
}

18

Proxy Classes and Proxy HandlesProxy Classes and Proxy Handles

● In the client’s address space, an instance of IceProxy::M::Simple
is the local ambassador for a remote instance of the Simple interface
in a server and is known as a proxy class instance.
● All the details about the server-side object, such as its address, what

protocol to use, and its object identity are encapsulated in that instance.
● Simple inherits from IceProxy::Ice::Object. This reflects the

fact that all Ice interfaces implicitly inherit from Ice::Object.
● For each operation in the interface, the proxy class has two

overloaded member functions of the same name.
● The operation op has been mapped to two member functions op.

● One of the overloaded member functions has a trailing parameter of type
Ice::Context.
● This parameter is for use by the Ice run time to store information about how

to deliver a request; normally, you do not need to supply a value here and
can pretend that the trailing parameter does not exist.

19

Proxy Classes and Proxy HandlesProxy Classes and Proxy Handles
● Client-side application code never manipulates proxy class

instances directly.
● You are not allowed to instantiate a proxy class directly.

● Proxy instances are always instantiated on behalf of the
client by the Ice run time.

● When the client receives a proxy from the run time, it is
given a proxy handle to the proxy, of type
<interface-name>Prx (SimplePrx for the preceding
example).

● The client accesses the proxy via its proxy handle; the
handle takes care of forwarding operation invocations to its
underlying proxy, as well as reference-counting the proxy.
● No memory-management issues can arise: deallocation of a

proxy is automatic and happens once the last handle to the
proxy disappears (goes out of scope).

20

Methods on Proxy HandlesMethods on Proxy Handles

● The handle is actually a template of type
IceInternal::ProxyHandle that takes the proxy class
as the template parameter. This template has the usual
constructor, copy constructor, and assignment operator.

● Default constructor
● You can default-construct a proxy handle. The default

constructor creates a proxy that points nowhere (that is, points
at no object at all). If you invoke an operation on such a null
proxy, you get an IceUtil::NullHandleException:

try {
 SimplePrx s; // Default-constructed proxy
 s->op(); // Call via nil proxy
 assert(0); // Can't get here
} catch (const IceUtil::NullHandleException&) {
 cout << "As expected, got a NullHandleException"
 << endl;
}

21

Methods on Proxy HandlesMethods on Proxy Handles

● Copy constructor
● The copy constructor ensures that you can construct a proxy

handle from another proxy handle. Internally, this increments a
reference count on the proxy; the destructor decrements the
reference count again and, once the count drops to zero,
deallocates the underlying proxy class instance. That way,
memory leaks are avoided:

{ // Enter new scope
 SimplePrx s1 = ...; // Get a proxy from somewhere
 SimplePrx s2(s1); // Copy-construct s2
 assert(s1 == s2); // Assertion passes
} // Leave scope; s1, s2, and the
 // underlying proxy instance
 // are deallocated

22

Methods on Proxy HandlesMethods on Proxy Handles
● Assignment operator

● You can freely assign proxy handles to each other. The handle
implementation ensures that the appropriate memory-management
activities take place. Self-assignment is safe and you do not have to guard
against it:

SimplePrx s1 = ...; // Get a proxy from somewhere
SimplePrx s2; // s2 is nil
s2 = s1; // both point at the same object
s1 = 0; // s1 is nil
s2 = 0; // s2 is nil

● Widening assignments work implicitly. For example, if we have two
interfaces, Base and Derived, we can widen a DerivedPrx to a
BasePrx implicitly:

BasePrx base;
DerivedPrx derived;
base = derived; // Fine, no problem
derived = base; // Compile-time error

● Implicit narrowing conversions result in a compile error, so the usual C++
semantics are preserved: you can always assign a derived type to a base
type, but not vice versa.

23

Methods on Proxy HandlesMethods on Proxy Handles

● Checked cast
● Proxy handles provide a checkedCast method:

namespace IceInternal {
 template<typename T>
 class ProxyHandle : public IceUtil::HandleBase<T> {
 public:
 template<class Y>
 static ProxyHandle checkedCast(const ProxyHandle<Y>& r);
 template<class Y>
 static ProxyHandle checkedCast(const ProxyHandle<Y>& r,
 const ::Ice::Context& c);
 // ...
 };
}

24

Methods on Proxy HandlesMethods on Proxy Handles

● A checked cast has the same function for proxies as a C++
dynamic_cast has for pointers:
● It allows you to assign a base proxy to a derived proxy.

● If the base proxy’s actual run-time type is compatible with the derived
proxy’s static type, the assignment succeeds and, after the assignment,
the derived proxy denotes the same object as the base proxy.

● Otherwise, if the base proxy’s runtime type is incompatible with the
derived proxy’s static type, the derived proxy is set to null.

BasePrx base = ...; // Initialize base proxy
DerivedPrx derived;
derived = DerivedPrx::checkedCast(base);
if (derived) {
 // Base has run-time type Derived,
 // use derived...
} else {
 // Base has some other, unrelated type
}

● A checkedCast typically results in a remote message to the server.

25

Methods on Proxy HandlesMethods on Proxy Handles

● Unchecked cast
● In some cases, it is known that an object supports a more derived interface

than the static type of its proxy. For such cases, you can use an
unchecked down-cast:
namespace IceInternal {
 template<typename T>
 class ProxyHandle : public IceUtil::HandleBase<T> {
 public:
 template<class Y>
 static ProxyHandle uncheckedCast(const ProxyHandle<Y>& r);
 // ...
 };
}

● An uncheckedCast provides a down-cast without consulting the server
as to the actual run-time type of the object, for example:
BasePrx base = ...; // Initialize to point at a Derived
DerivedPrx derived;
derived = DerivedPrx::uncheckedCast(base);
// Use derived...

26

Methods on Proxy HandlesMethods on Proxy Handles

● Stream insertion and stringification
● For convenience, proxy handles also support insertion of a

proxy into a stream, for example:
Ice::ObjectPrx p = ...;
cout << p << endl;

● This code is equivalent to writing:
Ice::ObjectPrx p = ...;
cout << p->ice_toString() << endl;

● Either code prints the stringified proxy. You could also achieve
the same thing by writing:

Ice::ObjectPrx p = ...;
cout << communicator->proxyToString(p) << endl;

● The advantage of using the ice_toString member function
instead of proxyToString is that you do not need to have the
communicator available at the point of call.

27

Using Proxy MethodsUsing Proxy Methods
● The base proxy class ObjectPrx supports a variety of methods for

customizing a proxy.
● Since proxies are immutable, each of these “factory methods” returns a copy

of the original proxy that contains the desired modification.
● For example, you can obtain a proxy configured with a ten second timeout as

shown below:
Ice::ObjectPrx proxy = communicator->stringToProxy(...);
proxy = proxy->ice_timeout(10000);

● A factory method returns a new proxy object if the requested modification differs
from the current proxy, otherwise it returns the current proxy.

● With few exceptions, factory methods return a proxy of the same type as the
current proxy, therefore it is generally not necessary to repeat a down-cast after
using a factory method.

Ice::ObjectPrx base = communicator->stringToProxy(...);
HelloPrx hello = HelloPrx::checkedCast(base);
hello = hello->ice_timeout(10000); # Type is preserved
hello->sayHello();

● The only exceptions are the factory methods ice_facet and ice_identity.
● Calls to either of these methods may produce a proxy for an object of an unrelated type,

therefore they return a base proxy that you must subsequently down-cast to an
appropriate type.

28

Object Identity and Proxy ComparisonObject Identity and Proxy Comparison

● Proxy handles also support comparison.
● Specifically, the following operators are supported:

operator==
operator!=

● These operators permit you to compare proxies for equality
and inequality. To test whether a proxy is null, use a
comparison with the literal 0, for example:

if (proxy == 0)
 // It's a nil proxy
else
 // It's a non-nil proxy

29

Object Identity and Proxy ComparisonObject Identity and Proxy Comparison
● operator<
● operator<=
● operator>
● operator>=

● Proxies support comparison.
● This allows you to place proxies into STL containers such as

maps or sorted lists.
● Boolean comparison

● Proxies have a conversion operator to bool.
● The operator returns true if a proxy is not null, and false

otherwise.
BasePrx base = ...;
if (base)
 // It's a non-nil proxy
else
 // It's a nil proxy

30

Object Identity and Proxy ComparisonObject Identity and Proxy Comparison
● Proxy comparison uses all of the information in a proxy for the comparison.

● Not only the object identity must match for a comparison to succeed, but other
details inside the proxy, such as the protocol and endpoint information, must be
the same.

● Comparison with == and != tests for proxy identity, not object identity. A common
mistake is to write code along the following lines:

Ice::ObjectPrx p1 = ...; // Get a proxy...
Ice::ObjectPrx p2 = ...; // Get another proxy...
if (p1 != p2) {
 // p1 and p2 denote different objects // WRONG!
} else {
 // p1 and p2 denote the same object // Correct
}

● Even though p1 and p2 differ, they may denote the same Ice object.
● This can happen because, for example, both p1 and p2 embed the same object

identity, but each use a different protocol to contact the target object.
● If two proxies compare equal with ==, we know that the two proxies denote

the same object (because they are identical in all respects);
● If two proxies compare unequal with ==, we know absolutely nothing: the

proxies may or may not denote the same object.

31

Object Identity and Proxy ComparisonObject Identity and Proxy Comparison
● To compare the object identities of two proxies, you can use

helper functions in the Ice namespace:
namespace Ice {
 bool proxyIdentityLess(const ObjectPrx&,const ObjectPrx&);
 bool proxyIdentityEqual(const ObjectPrx&,const ObjectPrx&);
 bool proxyIdentityAndFacetLess(const ObjectPrx&, const ObjectPrx&);
 bool proxyIdentityAndFacetEqual(const ObjectPrx&,const ObjectPrx&);
}

● The proxyIdentityEqual function returns true if the object
identities embedded in two proxies are the same and ignores
other information in the proxies, such as facet and transport
information.
● To include the facet name in the comparison, use
proxyIdentityAndFacetEqual instead.

● The proxyIdentityLess function establishes a total ordering
on proxies.
● It is provided mainly so you can use object identity comparison with

STL sorted containers.

32

Mapping for OperationsMapping for Operations
● For each operation on an interface, the proxy class contains a

corresponding member function with the same name. To invoke an
operation, you call it via the proxy handle.
module Filesystem {
 interface Node {
 idempotent string name();
 };
 // ...
};

● The proxy class for the Node interface, tidied up to remove irrelevant
detail, is as follows:
namespace IceProxy {
 namespace Filesystem {
 class Node : virtual public IceProxy::Ice::Object {
 public:
 std::string name();
 // ...
 };
 typedef IceInternal::ProxyHandle<Node> NodePrx;
 // ...
 }
 // ...
}

33

Mapping for OperationsMapping for Operations

● The name operation returns a value of type string. Given a proxy to an object
of type Node, the client can invoke the operation as follows:
NodePrx node = ...; // Initialize proxy
string name = node->name(); // Get name via RPC

● The proxy handle overloads operator-> to forward method calls to the
underlying proxy class instance which, in turn, sends the operation
invocation to the server, waits until the operation is complete, and then
unmarshals the return value and returns it to the caller.

● Because the return value is of type string, it is safe to ignore the return value.
● The following code contains no memory leak:

NodePrx node = ...; // Initialize proxy
node->name(); // Useless, but no leak

● This is true for all mapped Slice types: you can safely ignore the return value
of an operation, no matter what its type - return values are always returned
by value.
● If you ignore the return value, no memory leak occurs because the

destructor of the returned value takes care of deallocating memory as
needed.

34

Normal and Normal and idempotentidempotent Operations Operations
● You can add an idempotent qualifier to a Slice operation. As far as the

signature for the corresponding proxy methods is concerned, idempotent has
no effect.

● Consider the following interface:
interface Example {
 string op1();
 idempotent string op2();
 idempotent void op3(string s);
};

● The proxy class for this interface looks like this:
namespace IceProxy {
 class Example : virtual public IceProxy::Ice::Object {
 public:
 std::string op1();
 std::string op2(); // idempotent
 void op3(const std::string&); // idempotent
 // ...
 };
}

● Because idempotent affects an aspect of call dispatch, not interface, it
makes sense for the mapping to be unaffected by the idempotent keyword.

35

Passing In-ParametersPassing In-Parameters

● The parameter passing rules for the C++ mapping are very
simple: parameters are passed either by value (for small
values) or by const reference (for values that are larger than
a machine word).

● Semantically, the two ways of passing parameters are
identical: it is guaranteed that the value of a parameter will
not be changed by the invocation (with some caveats)

36

Passing In-ParametersPassing In-Parameters

struct NumberAndString {
 int x;
 string str;
};
sequence<string> StringSeq;
dictionary<long, StringSeq> StringTable;
interface ClientToServer {
 void op1(int i, float f, bool b, string s);
 void op2(NumberAndString ns, StringSeq ss, StringTable st);
 void op3(ClientToServer* proxy);
};

struct NumberAndString {
 int x;
 string str;
};
sequence<string> StringSeq;
dictionary<long, StringSeq> StringTable;
interface ClientToServer {
 void op1(int i, float f, bool b, string s);
 void op2(NumberAndString ns, StringSeq ss, StringTable st);
 void op3(ClientToServer* proxy);
};

struct NumberAndString {
 Ice::Int x;
 std::string str;
 // ...
};
typedef std::vector<std::string> StringSeq;
typedef std::map<Ice::Long, StringSeq> StringTable;
namespace IceProxy {
 class ClientToServer : virtual public IceProxy::Ice::Object {
 public:
 void op1(Ice::Int, Ice::Float, bool, const std::string&);
 void op2(const NumberAndString&,
 const StringSeq&,
 const StringTable&);
 void op3(const ClientToServerPrx&);
 // ...
 };
}

struct NumberAndString {
 Ice::Int x;
 std::string str;
 // ...
};
typedef std::vector<std::string> StringSeq;
typedef std::map<Ice::Long, StringSeq> StringTable;
namespace IceProxy {
 class ClientToServer : virtual public IceProxy::Ice::Object {
 public:
 void op1(Ice::Int, Ice::Float, bool, const std::string&);
 void op2(const NumberAndString&,
 const StringSeq&,
 const StringTable&);
 void op3(const ClientToServerPrx&);
 // ...
 };
}

37

Passing In-ParametersPassing In-Parameters
● Given a proxy to a ClientToServer interface, the client code can

pass parameters as in the following example:
ClientToServerPrx p = ...; // Get proxy...
p->op1(42, 3.14, true, "Hello world!");
 // Pass simple literals
int i = 42;
float f = 3.14;
bool b = true;
string s = "Hello world!";
p->op1(i, f, b, s); // Pass simple variables
NumberAndString ns = { 42, "The Answer" };
StringSeq ss;
ss.push_back("Hello world!");
StringTable st;
st[0] = ss;
p->op2(ns, ss, st); // Pass complex variables
p->op3(p); // Pass proxy

● You can pass either literals or variables to the various operations.
Because everything is passed by value or const reference, there are
no memory-management issues to consider.

38

Passing Out-ParametersPassing Out-Parameters

struct NumberAndString {
 int x;
 string str;
};
sequence<string> StringSeq;
dictionary<long, StringSeq> StringTable;
interface ServerToClient {
 void op1(out int i, out float f, out bool b, out string s);
 void op2(out NumberAndString ns,
 out StringSeq ss,
 out StringTable st);
 void op3(out ServerToClient* proxy);
};

struct NumberAndString {
 int x;
 string str;
};
sequence<string> StringSeq;
dictionary<long, StringSeq> StringTable;
interface ServerToClient {
 void op1(out int i, out float f, out bool b, out string s);
 void op2(out NumberAndString ns,
 out StringSeq ss,
 out StringTable st);
 void op3(out ServerToClient* proxy);
};

namespace IceProxy {
 class ServerToClient : virtual public IceProxy::Ice::Object {
 public:
 void op1(Ice::Int&, Ice::Float&, bool&, std::string&);
 void op2(NumberAndString&, StringSeq&, StringTable&);
 void op3(ServerToClientPrx&);
 // ...
 };
}

namespace IceProxy {
 class ServerToClient : virtual public IceProxy::Ice::Object {
 public:
 void op1(Ice::Int&, Ice::Float&, bool&, std::string&);
 void op2(NumberAndString&, StringSeq&, StringTable&);
 void op3(ServerToClientPrx&);
 // ...
 };
}

● The C++ mapping passes out-parameters by reference.

39

Passing Out-ParametersPassing Out-Parameters
● Given a proxy to a ServerToClient interface, the client code can

pass parameters as in the following example:
ServerToClientPrx p = ...; // Get proxy...
int i;
float f;
bool b;
string s;
p->op1(i, f, b, s);
 // i, f, b, and s contain updated values now
NumberAndString ns;
StringSeq ss;
StringTable st;
p->op2(ns, ss, st);
 // ns, ss, and st contain updated values now
p->op3(p);
 // p has changed now!

● Again, there are no surprises in this code: the caller simply
passes variables to an operation; once the operation completes,
the values of those variables will be set by the server.

40

Passing Out-ParametersPassing Out-Parameters

● It is worth having another look at the final call:
● p->op3(p); // Weird, but well-defined

● Here, p is the proxy that is used to dispatch the call. That
same variable p is also passed as an out-parameter to the
call, meaning that the server will set its value.

● In general, passing the same parameter as both an input
and output parameter is safe
● The Ice run time will correctly handle all locking and memory-

management activities.

41

Passing Out-ParametersPassing Out-Parameters
● Another, somewhat pathological example is the following:

sequence<int> Row;
sequence<Row> Matrix;
interface MatrixArithmetic {
 void multiply(Matrix m1,
 Matrix m2,
 out Matrix result);
};

● Given a proxy to a MatrixArithmetic interface, the client code could do the following:
MatrixArithmeticPrx ma = ...; // Get proxy...
Matrix m1 = ...; // Initialize one matrix
Matrix m2 = ...; // Initialize second matrix
ma->multiply(m1, m2, m1); // !!!

● This code is technically legal, in the sense that no memory corruption or locking
issues will arise, but it has surprising behavior:
● Because the same variable m1 is passed as an input parameter as well as an output

parameter, the final value of m1 is indeterminate
● If client and server are collocated in the same address space, the implementation of the

operation will overwrite parts of the input matrix m1
● In general, you should take care when passing the same variable as both an input and

output parameter and only do so if the called operation guarantees to be well-behaved in
this case.

42

Chained InvocationsChained Invocations

● Consider the following simple interface containing two
operations, one to set a value and one to get it:
interface Name {
 string getName();
 void setName(string name);
};

● Suppose we have two proxies to interfaces of type Name, p1
and p2, and chain invocations as follows:
● p2->setName(p1->getName());

● This works exactly as intended: the value returned by p1 is
transferred to p2.
● There are no memory-management or exception safety issues

with this code.

43

Exception HandlingException Handling
● Any operation invocation may throw a run-time exception and, if

the operation has an exception specification, may also throw
user exceptions. Suppose we have the following interface:
exception Tantrum {
 string reason;
};
interface Child {
 void askToCleanUp() throws Tantrum;
};

● Slice exceptions are thrown as C++ exceptions, so you can
simply enclose one or more operation invocations in a try-catch
block:
ChildPrx child = ...; // Get proxy...
try {
 child->askToCleanUp(); // Give it a try...
} catch (const Tantrum& t) {
 cout << "The child says: " << t.reason << endl;
}

44

Exception HandlingException Handling
● Typically, you will catch only a few exceptions of specific interest around an operation invocation; other

exceptions, such as unexpected run-time errors, will typically be dealt with by exception handlers higher in
the hierarchy. For example:

● This code handles a specific exception of local interest at the point of call and deals with other exceptions
generically.

● For efficiency reasons, you should always catch exceptions by const reference.
● This permits the compiler to avoid calling the exception’s copy constructor.

void run()
{
 ChildPrx child = ...; // Get proxy...
 try {
 child->askToCleanUp(); // Give it a try...
 } catch (const Tantrum& t) {
 cout << "The child says: " << t.reason << endl;
 child->scold(); // Recover from error...
 }
 child->praise(); // Give positive feedback...
}
int main(int argc, char* argv[])
{
 int status = 1;
 try {
 // ...
 run();
 // ...
 status = 0;
 } catch (const Ice::Exception& e) {
 cerr << "Unexpected run-time error: " << e << endl;
 }
 // ...
 return status;
}

void run()
{
 ChildPrx child = ...; // Get proxy...
 try {
 child->askToCleanUp(); // Give it a try...
 } catch (const Tantrum& t) {
 cout << "The child says: " << t.reason << endl;
 child->scold(); // Recover from error...
 }
 child->praise(); // Give positive feedback...
}
int main(int argc, char* argv[])
{
 int status = 1;
 try {
 // ...
 run();
 // ...
 status = 0;
 } catch (const Ice::Exception& e) {
 cerr << "Unexpected run-time error: " << e << endl;
 }
 // ...
 return status;
}

45

Exception HandlingException Handling

● Exceptions and Out-Parameters
● The Ice run time makes no guarantees about the state of out-

parameters when an operation throws an exception:
● The parameter may have still have its original value or may have

been changed by the operation’s implementation in the target
object.

● Exceptions and Return Values
● For return values, C++ provides the guarantee that a variable

receiving the return value of an operation will not be overwritten
if an exception is thrown.
● This guarantee holds only if you do not use the same variable as

both an out-parameter and to receive the return value of an
invocation.

	Introduction to PETSc 2
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

