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Server-Side Slice-to-C++ MappingServer-Side Slice-to-C++ Mapping

● The mapping for Slice data types to C++ is identical on the 
client side and server side.

● For the server side, there are a few additional things you 
need to know, specifically:
● How to initialize and finalize the server-side run time
● How to implement servants
● How to pass parameters and throw exceptions
● How to create servants and register them with the Ice run time.
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The Server-Side The Server-Side mainmain Function Function

● The main entry point to the Ice run time is represented by the local interface 
Ice::Communicator.

● As for the client side, you must initialize the Ice run time by calling 
Ice::initialize before you can do anything else in your server.

● Ice::initialize returns a smart pointer to an instance of an Ice::Communicator:
int main(int argc, char* argv[])
{
Ice::CommunicatorPtr ic
= Ice::initialize(argc, argv);
// ...
}

● Ice::initialize accepts a C++ reference to argc and argv.
● The function scans the argument vector for any command-line options that 

are relevant to the Ice run time.
● Any such options are removed from the argument vector so, when 
Ice::initialize returns, the only options and arguments remaining 
are those that concern your application.

● If anything goes wrong during initialization, initialize throws an exception.



4

The Server-Side The Server-Side mainmain Function Function

● Before leaving your main function, you must call 
Communicator::destroy.

● The destroy operation is responsible for finalizing the Ice run 
time.
● In particular, destroy waits for any operation implementations 

that are still executing in the server to complete. In addition, 
destroy ensures that any outstanding threads are joined with 
and reclaims a number of operating system resources, such as 
file descriptors and memory.

● Never allow your main function to terminate without calling 
destroy first; doing so has undefined behavior.
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The Server-Side The Server-Side mainmain Function Function
● The general shape of our server-side main function is 

therefore as follows:
#include <Ice/Ice.h>
int
main(int argc, char* argv[])
{
  int status = 0;
  Ice::CommunicatorPtr ic;
  try {
    ic = Ice::initialize(argc, argv);
    // Server code here...
  } catch (const Ice::Exception& e) {
    cerr << e << endl;
    status = 1;
  } catch (const std::string& msg) {
    cerr << msg << endl;
    status = 1;
  } catch (const char* msg) {
    cerr << msg << endl;
    status = 1;
  }
  if (ic) {
    try {
      ic->destroy();
    } catch (const std::string& msg) {
      cerr << msg << endl;
      status = 1;
    }
  }
  return status;
}

#include <Ice/Ice.h>
int
main(int argc, char* argv[])
{
  int status = 0;
  Ice::CommunicatorPtr ic;
  try {
    ic = Ice::initialize(argc, argv);
    // Server code here...
  } catch (const Ice::Exception& e) {
    cerr << e << endl;
    status = 1;
  } catch (const std::string& msg) {
    cerr << msg << endl;
    status = 1;
  } catch (const char* msg) {
    cerr << msg << endl;
    status = 1;
  }
  if (ic) {
    try {
      ic->destroy();
    } catch (const std::string& msg) {
      cerr << msg << endl;
      status = 1;
    }
  }
  return status;
}
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The The Ice::ApplicationIce::Application Class Class
● The preceding structure for the main function is so common 

that Ice offers a class, Ice::Application, that 
encapsulates all the correct initialization and finalization 
activities.

namespace Ice {
  enum SignalPolicy { HandleSignals, NoSignalHandling };
  class Application /* ... */ {
  public:
    Application(SignalPolicy = HandleSignals);
    virtual ~Application();
    int main(int argc, char*[] argv);
    int main(int, char*[], const char* config);
    int main(int argc, char*[] argv,
             const Ice::InitializationData& id);
    int main(const Ice::StringSeq&);
    int main(const Ice::StringSeq&, const char* config);
    int main(const Ice::StringSeq&,
             const Ice::InitializationData& id);
    virtual int run(int, char*[]) = 0;
    static const char* appName();
    static CommunicatorPtr communicator();
    static bool interrupted();
    // ...
  };
}

namespace Ice {
  enum SignalPolicy { HandleSignals, NoSignalHandling };
  class Application /* ... */ {
  public:
    Application(SignalPolicy = HandleSignals);
    virtual ~Application();
    int main(int argc, char*[] argv);
    int main(int, char*[], const char* config);
    int main(int argc, char*[] argv,
             const Ice::InitializationData& id);
    int main(const Ice::StringSeq&);
    int main(const Ice::StringSeq&, const char* config);
    int main(const Ice::StringSeq&,
             const Ice::InitializationData& id);
    virtual int run(int, char*[]) = 0;
    static const char* appName();
    static CommunicatorPtr communicator();
    static bool interrupted();
    // ...
  };
}
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The The Ice::ApplicationIce::Application Class Class
● The intent of this class is that you specialize Ice::Application and implement the pure 

virtual run method in your derived class. Whatever code you would normally place in main 
goes into the run method instead.

● Using Ice::Application, our program looks as follows:

● The class also handles the OS signals and, by default, shuts down the server cleanly.
● The interrupted function returns true if a signal caused the communicator to shut down, 

false otherwise.
● This allows us to distinguish intentional shutdown from a forced shutdown that was caused 

by a signal.

#include <Ice/Ice.h>
class MyApplication : virtual public Ice::Application {
  public:
  virtual int run(int, char*[]) {
  // Server code here...
  if (interrupted())
    cerr << appName() << ": terminating" << endl;
  return 0;
  }
};
int
main(int argc, char* argv[])
{
  MyApplication app;
  return app.main(argc, argv);
}

#include <Ice/Ice.h>
class MyApplication : virtual public Ice::Application {
  public:
  virtual int run(int, char*[]) {
  // Server code here...
  if (interrupted())
    cerr << appName() << ": terminating" << endl;
  return 0;
  }
};
int
main(int argc, char* argv[])
{
  MyApplication app;
  return app.main(argc, argv);
}
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The The Ice::ApplicationIce::Application Class Class

● The Application::main function does the following:
● It installs an exception handler for Ice::Exception. If your code fails to 

handle an Ice exception, Application::main prints the exception 
details on stderr before returning with a non-zero return value.

● It installs exception handlers for const std::string & and const 
char *. This allows you to terminate your server in response to a fatal 
error condition by throwing a std::string or a string literal. 
Application::main prints the string on stderr before returning a 
nonzero return value.

● It initializes (by calling Ice::initialize) and finalizes (by calling 
Communicator::destroy) a communicator. You can get access to the 
communicator for your server by calling the static communicator() 
member.

● It scans the argument vector for options that are relevant to the Ice run 
time and removes any such options. The argument vector that is passed to 
your run method therefore is free of Ice-related options and only contains 
options and arguments that are specific to your application.
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The The Ice::ApplicationIce::Application Class Class

● The Application::main function does also the following:
● It provides the name of your application via the static appName member 

function. The return value from this call is argv[0], so you can get at 
argv[0] from anywhere in your code by calling 
Ice::Application::appName (which is usually required for error 
messages).

● It creates an IceUtil::CtrlCHandler that properly destroys the 
communicator.

● It installs a per-process logger, if the application has not already configured 
one. The per-process logger uses the value of the Ice.ProgramName 
property as a prefix for its messages and sends its output to the standard 
error channel. An application can specify an alternate logger by including it 
in the InitializationData structure.

● Using Ice::Application ensures that your program properly 
finalizes the Ice run time, whether your server terminates normally or 
in response to an exception or signal.



10

Mapping for InterfacesMapping for Interfaces

● The server-side mapping for interfaces provides an up-call 
API for the Ice run time:
● By implementing virtual functions in a servant class, you 

provide the hook that gets the thread of control from the Ice 
server-side run time into your application code.
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Skeleton ClassesSkeleton Classes
● On the client side, interfaces map to proxy classes.
● On the server side, interfaces map to skeleton classes.

● A skeleton is a class that has a pure virtual member function for each operation on 
the corresponding interface.

● Consider the Slice definition for the Node interface:
module Filesystem {
  interface Node {
    idempotent string name();
  };
  // ...
};

● The Slice compiler generates the following definition for this interface:
namespace Filesystem {
  class Node : virtual public Ice::Object {
  public:
    virtual std::string name(const Ice::Current& =
                                   Ice::Current()) = 0;
    // ...
  };
  // ...
}
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Skeleton ClassesSkeleton Classes

● As for the client side, Slice modules are mapped to C++ 
namespaces with the same name, so the skeleton class 
definition is nested in the namespace Filesystem.

● The name of the skeleton class is the same as the name of 
the Slice interface (Node).

● The skeleton class contains a pure virtual member function 
for each operation in the Slice interface.

● The skeleton class is an abstract base class because its 
member functions are pure virtual.

● The skeleton class inherits from Ice::Object (which 
forms the root of the Ice object hierarchy).



13

Servant ClassesServant Classes
● In order to provide an implementation for an Ice object, you must 

create a servant class that inherits from the corresponding 
skeleton class.
#include <Filesystem.h> // Slice-generated header
class NodeI : public virtual Filesystem::Node {
  public:
    NodeI(const std::string&);
    virtual std::string name(const Ice::Current&);
  private:
    std::string _name;
};

● NodeI inherits from Filesystem::Node, that is, it derives from 
its skeleton class.

● It is a good idea to always use virtual inheritance when defining 
servant classes.
● Virtual inheritance is necessary only for servants that implement 

interfaces that use multiple inheritance.
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Servant ClassesServant Classes
● As far as Ice is concerned, the NodeI class must implement only 

a single member function: the pure virtual name function that it 
inherits from its skeleton.
● This makes the servant class a concrete class that can be 

instantiated.
● You can add other member functions and data members as you see 

fit to support your implementation.
● In the preceding definition, we added a _name member and a 

constructor
NodeI::NodeI(const std::string& name) : 
_name(name)
{
}
std::string
NodeI::name(const Ice::Current&) const
{
  return _name;
}
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Parameter PassingParameter Passing

● For each parameter of a Slice operation, the C++ mapping 
generates a corresponding parameter for the virtual member 
function in the skeleton.

● In addition, every operation has an additional, trailing 
parameter of type Ice::Current, which provides provides 
access to additional information about the currently 
executing request.

● Parameter passing on the server side follows the rules for 
the client side:
● in-parameters are passed by value or const reference.
● out-parameters are passed by reference.
● return values are passed by value
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Parameter PassingParameter Passing

module M {
  interface Example {
    string op(string sin, out string sout);
  };
};

module M {
  interface Example {
    string op(string sin, out string sout);
  };
};

namespace M {
  class Example : virtual public ::Ice::Object {
  public:
    virtual std::string op(const std::string&, std::string&,
                           const Ice::Current& = Ice::Current()) = 0;
  // ...
  };
}

namespace M {
  class Example : virtual public ::Ice::Object {
  public:
    virtual std::string op(const std::string&, std::string&,
                           const Ice::Current& = Ice::Current()) = 0;
  // ...
  };
}

● We could implement op as follows:

std::string
ExampleI::op(const std::string& sin,
             std::string& sout,
             const Ice::Current&)
{
  cout << sin << endl; // In parameters are initialized
  sout = "Hello World!"; // Assign out parameter
  return "Done"; // Return a string
}

std::string
ExampleI::op(const std::string& sin,
             std::string& sout,
             const Ice::Current&)
{
  cout << sin << endl; // In parameters are initialized
  sout = "Hello World!"; // Assign out parameter
  return "Done"; // Return a string
}



17

Raising ExceptionsRaising Exceptions

● To throw an exception from an operation implementation, you 
simply instantiate the exception, initialize it, and throw it.

void Filesystem::FileI::write(const Filesystem::Lines& text,
                              const Ice::Current&)
{
  // Try to write the file contents here...
  // Assume we are out of space...
  if (error) {
    Filesystem::GenericError e;
    e.reason = "file too large";
    throw e;
  }
};

● No memory management issues arise in the presence of 
exceptions.
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Raising ExceptionsRaising Exceptions
● The Slice compiler never generates exception specifications for 

operations, regardless of whether the corresponding Slice operation 
definition has an exception specification or not.
● C++ exception specifications do not add any value and are therefore not 

used by the Ice C++ mapping.
● If you throw an arbitrary C++ exception (such as an int or other 

unexpected type), the Ice run time catches the exception and then 
returns an UnknownException to the client.

● Similarly, if you throw an “impossible” user exception (a user exception 
that is not listed in the exception specification of the operation), the 
client receives an UnknownUserException.

● If you throw a run-time exception, such as MemoryLimitException, 
the client receives an UnknownLocalException.
● For that reason, you should never throw system exceptions from operation 

implementations.
● If you do, all the client will see is an UnknownLocalException, which 

does not tell the client anything useful.
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Object IncarnationObject Incarnation

● Having created a servant class such as the rudimentary 
NodeI class,  you can instantiate the class to create a 
concrete servant that can receive invocations from a client.

● Merely instantiating a servant class is insufficient to 
incarnate an object.

● Specifically, to provide an implementation of an Ice object, 
you must follow the following steps:
● Instantiate a servant class.
● Create an identity for the Ice object incarnated by the servant.
● Inform the Ice run time of the existence of the servant.
● Pass a proxy for the object to a client so the client can reach it.
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Instantiating a ServantInstantiating a Servant
● Instantiating a servant means to allocate an instance on the 

heap:
● NodePtr servant = new NodeI("Fred");

● This code creates a new NodeI instance on the heap and 
assigns its address to a smart pointer of type NodePtr.
● This works because NodeI is derived from Node, so a smart pointer 

of type NodePtr can also look after an instance of type NodeI.
● However, if we want to invoke a member function of the derived 
NodeI class at this point, we have a problem: we cannot access 
member functions of the derived NodeI class through a 
NodePtr smart pointer, only member functions of Node base 
class.

● To get around this, we can modify the code as follows:
typedef IceUtil::Handle<NodeI> NodeIPtr;
NodeIPtr servant = new NodeI("Fred");
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Creating an IdentityCreating an Identity

● Each Ice object requires an identity. That identity must be unique for 
all servants using the same object adapter.

● An Ice object identity is a structure with the following Slice definition:
module Ice {
  struct Identity {
    string name;
    string category;
  };
  // ...
};

● The full identity of an object is the combination of both the name and 
category fields of the Identity structure.
● For now, we will leave the category field as the empty string and simply 

use the name field.
● To create an identity, we simply assign a key that identifies the servant to the 

name field of the Identity structure:
Ice::Identity id;
id.name = "Fred"; // Not unique, but good enough for now
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Activating a ServantActivating a Servant
● Merely creating a servant instance does nothing: the Ice run time becomes aware of 

the existence of a servant only once you explicitly tell the object adapter about the 
servant.

● To activate a servant, you invoke the add operation on the object adapter.
● Assuming that we have access to the object adapter in the _adapter variable, we 

can write:
● _adapter->add(servant, id);

● Note the two arguments to add: the smart pointer to the servant and the object 
identity.

● Calling add on the object adapter adds the servant pointer and the servant’s identity 
to the adapter’s servant map and links the proxy for an Ice object to the correct 
servant instance in the server’s memory as follows:
● The proxy for an Ice object, apart from addressing information, contains the identity of the 

Ice object. When a client invokes an operation, the object identity is sent with the request to 
the server.

● The object adapter receives the request, retrieves the identity, and uses the identity as an 
index into the servant map.

● If a servant with that identity is active, the object adapter retrieves the servant pointer from 
the servant map and dispatches the incoming request into the correct member function on 
the servant.

● Assuming that the object adapter is in the active state, client requests are 
dispatched to the servant as soon as you call add.



23

Servant Life Time and Reference CountsServant Life Time and Reference Counts
● Putting the preceding points together, we can write a simple 

function that instantiates and activates one of our NodeI 
servants.

● For this example, we use a simple helper function called 
activateServant that creates and activates a servant with a 
given identity:

void activateServant(const string& name)
{
  NodePtr servant = new NodeI(name); 
     // Refcount == 1
  Ice::Identity id;
  id.name = name;
  _adapter->add(servant, id); 
     // Refcount == 2
}
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Servant Life Time and Reference CountsServant Life Time and Reference Counts

● We create the servant on the heap and that, once activateServant 
returns, we lose the last remaining handle to the servant.

● What happens to the heap-allocated servant instance?
● When the new servant is instantiated, its reference count is initialized to 0.
● Assigning the servant’s address to the servant smart pointer increments 

the servant’s reference count to 1.
● Calling add passes the servant smart pointer to the object adapter which 

keeps a copy of the handle internally. This increments the reference count 
of the servant to 2.

● When activateServant returns, the destructor of the servant variable 
decrements the reference count of the servant to 1.

● The net effect is that the servant is retained on the heap with a 
reference count of 1 for as long as the servant is in the servant map of 
its object adapter. (If we deactivate the servant, that is, remove it from 
the servant map, the reference count drops to zero and the memory 
occupied by the servant is reclaimed.
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UUIDs as IdentitiesUUIDs as Identities
● The Ice object model assumes that object identities are globally 

unique.
● One way of ensuring that uniqueness is to use UUIDs 

(Universally Unique Identifiers) as identities.
● The IceUtil namespace contains a helper function to create such 

identities:
#include <IceUtil/UUID.h>
#include <iostream>
using namespace std;
int main()
{
  cout << IceUtil::generateUUID() << endl;
}

● When executed, this program prints a unique string such as 
5029a22c-e333-4f87-86b1-cd5e0fcce509.

● Each call to generateUUID creates a string that differs from all 
previous ones.



26

UUIDs as IdentitiesUUIDs as Identities

● You can use a UUID such as this to create object identities.
● For convenience, the object adapter has an operation 
addWithUUID that generates a UUID and adds a servant to 
the servant map in a single step.

● Using this operation, we can rewrite the code like this:

void activateServant(const string& name)
{
  NodePtr servant = new NodeI(name);
  _adapter->addWithUUID(servant);
}
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Creating ProxiesCreating Proxies
● Once we have activated a servant for an Ice object, the server 

can process incoming client requests for that object.
● Clients can only access the object once they hold a proxy for the 

object.
● If a client knows the server’s address details and the object identity, 

it can create a proxy from a string.
● Creation of proxies by the client in this manner is usually only done 

to allow the client access to initial objects for bootstrapping.
● Once the client has an initial proxy, it typically obtains further proxies 

by invoking operations.
● The object adapter contains all the details that make up the 

information in a proxy: the addressing and protocol information, 
and the object identity.

● The Ice run time offers a number of ways to create proxies.
● Once created, you can pass a proxy to the client as the return 

value or as an out-parameter of an operation invocation.
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Proxies and Servant ActivationProxies and Servant Activation

● The add and addWithUUID servant activation operations 
on the object adapter return a proxy for the corresponding 
Ice object.

● This means we can write:
typedef IceUtil::Handle<NodeI> NodeIPtr;
NodeIPtr servant = new NodeI(name);
NodePrx proxy = NodePrx::uncheckedCast(
                  _adapter->addWithUUID(servant));
// Pass proxy to client...

● Here, addWithUUID both activates the servant and returns 
a proxy for the Ice object incarnated by that servant in a 
single step. 

● We need to use an uncheckedCast here because 
addWithUUID returns a proxy of type Ice::ObjectPrx.
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Direct Proxy CreationDirect Proxy Creation
● The object adapter offers an operation to create a proxy for a given 

identity:
module Ice {
  local interface ObjectAdapter {
    Object* createProxy(Identity id);
    // ...
  };
};

● Note that createProxy creates a proxy for a given identity whether a 
servant is activated with that identity or not. In other words, proxies 
have a life cycle that is quite independent from the life cycle of 
servants:
Ice::Identity id;
id.name = IceUtil::generateUUID();
ObjectPrx o = _adapter->createProxy(id);

● This creates a proxy for an Ice object with the identity returned by 
generateUUID. Obviously, no servant yet exists for that object so, if 
we return the proxy to a client and the client invokes an operation on 
the proxy, the client will receive an ObjectNotExistException.
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