Memory Representation

High Memory

* We typically draw diagrams
representing the memory of the
computer, our particular program
or both as rectangles.

e Our convention will be that "low-
memory" will be on the bottom and
"high-memory" on top.

* Typically these drawings are not to
scale

Low Memory

Typical Arrangement

* Normally the actual program code
(executable instructions) is placed
iIn low memory

Code

Typical Arrangement

* Next we have an area for storage
of constant data

Constant Data

Code

Typical Arrangement

* Data that may be changed follows

Alterable Data

Constant Data

Code

Typical Arrangement

* These three items comprise
what is considered the static
area of memory. The static
area details (size, what is
where, etc.) are known at
translation or compile time.

Static

Alterable Data

Constant Data

Code

Typical Arrangement

* Immediately above the static
area the heap is located.

* The heap can expand upward
as the program dynamically

requests additional storage t

space ke bLo_o_-_.
* In most cases, the runtime Heap

- -

environment manages the Alterable Data

heap for the user o
» We will return to this issue in ®© < | Constant Data

a while \

Code

Typical Arrangement

* Finally, the stack starts in high

memory and can grow down Stack

asspaceisneeded 0 |F---- ; —————
» Stack expands with every

function call and contracts t

with every function return Lo ___L____.
* ltems maintained in the stack Heap

include _ g Alterable Data

e Local variables o

- Function parameters © < | Constant Data

* Return values L

Code

Stack

* Last In, First Out (LIFO) memory usage

stack

main ()

{ a(0);

}

void a (int m)

{ b(1);

}

void b (int n)

{ c(2);

}

void d (int p)

{

} Stack Pointer —»

Typical Arrangement

/
Stack
(@b JUNN ['S R SN ————
. E v
* These items in the upper G <
portion of the diagram change & t
during executionofthe @ | F——---L____.
program. N Heap
* Thus they are called dynamic Alterable Data
O
g < | Constant Data
N
Code

const

* [tems to be maintained in the Stack
Constant Data area are
designated by the
programmer with the const

keyword
» String constants also go there
* WARNING!!! On some
systems, it is possible (and
rela.tively easy) to modify data -% Constant Data
designated as const &

Dynamic

10

auto

e auto, short for automatic
variables are those that exist
on the stack. The auto
keyword is not normally used.

* Automatic means that space
Is allocated and deallocated
on the stack automatically
without the programmer
having to do any special
operations.

Alterable Data

Constant Data

Static
A

Code

11

static and extern

e static and extern variables
exist in an area of memory set
aside for alterable (or
readable/writeable) data

e static can have different

Dynamic

meanings depending on
where used.

Static

12

Dynamic Memory Allocation

* Fixed-sized objects, where size is known at compile-time,
are stored on the stack or in the static memory area

* Sometimes you don't know the size you'll need for an array
at compile-time

* You can request memory dynamically, at run time, from the
heap

* Dynamic allocation can also be used to create memory for
one object (int, structure, etc.)

13

Dynamic Allocation Functions

* Dynamic allocation functions:
* malloc — allocates space that is uninitialized

 calloc — allocates spaces that is initialized with O's
 realloc - re-allocates space
« free — deallocates space

e Declared in <stdlib.h>

 Everymalloc, calloc, realloc should have a
matching call to free

* Otherwise, you have a memory leak

14

malloc

int *ip; /* define a pointer */

ip = malloc (10 * sizeof(int));

/* memory for 10 elements of type int allocated */
if (ip == NULL)

{

/* Handle Error! */
}
* Options for handling error
* Abort
* Ask again
* Save user data
* Ask for less
* Free up something

15

malloc

int *ip;
ip = malloc (10 * sizeof(int));
if (ip = NULL)
{
/* Handle Error! */
}

* Note how incredibly bad it would be to use the assignment
operator!

* The pointer would be set to NULL
* The error code would be skipped
e« SOme programmers use: NULL == ipor 'ip

16

malloc — what happens?

int *ip;

ip

malloc (10 * sizeof(int)) ;

Stack

v

4
Heap 40 bytes
Data —

Code

17

Memory Layout Example

#include <stdio.h>
#include <stdlib.h>

char ga[]="etext";

int 1i;

int
main ()

{

int j;

printf ("main=
printf ("sctext=
printf ("slctext=
printf ("pl=
printf ("p2=
printf ("etext=
printf ("stext=
printf ("sltext=
printf ("&i=
printf ("p3=
printf ("&pl=
printf (" &p2=
printf (" &p3=
printf ("&j=
return O;

static char gb[]="stext";
const static char gc[]="sctext";

static char a[]="sltext";

static const char b[]="slctext";
const char* pl="text";

const char* const p2="text";
char* p3=malloc(10) ;

sp\n", (void*)main) ;
$p\n", (void*)gc) ;
$p\n", (void*)b) ;
$p\n", (void*)pl) ;
$p\n", (void*)p2) ;
$p\n", (void*)ga) ;
$p\n", (void*)gb) ;
$p\n", (void*)a);
$p\n", (void*) &i) ;
$p\n", (void*)p3) ;
$p\n", (void*) &pl) ;
$p\n", (void*) &p2) ;
$sp\n", (void*) &p3) ;
$p\n", (void*) &j) ;

main=
sctext=
slctext=
pl=

p2=
etext=
stext=
sltext=
&i=

p3=
&pl=
&p2=
&p3=
&j=

0x8048394
0x8048534
0x804853b
0x8048543
0x8048543
0x804960c
0x8049612
0x8049618
0x8049728
0x8049738
Oxbffff498
Oxbff£f£494
Oxbffff490
Oxbffff48c

Alterable Data

Constant Data

Code

18

Using The Space

int 1i;
int *ip;
if((ip = malloc(10*sizeof (int)))
{
/* Handle Error Here */
}
for(i = 0; 1 < 10; i++)

ip[i] = 1i;

NULL)

19

Flexibility

#define MAX 10
int *ip;

ip = malloc(MAX * sizeof(int));
« What if we change the type of int *ip???
#define MAX 10

int *ip;
ip = malloc(MAX * sizeof(*ip)):

20

Prototypes

* void *malloc(size t n);

e void free (void *p);

* void *realloc(void *p, size t n);
* What is this mysterious void pointer?

21

void pointer

* Not originally in C
* Relatively recent addition
* Basically a “generic” pointer

 Intended for use in applications like £ree where the block of

memory located at some address will be freed without any
necessity of defining the type

22

Powerful and Dangerous

void *vp;

char *cp;

int *ip;

ip = cp; /* illegal */
* Instead

ip = (int *)cp;
*or

vp = cp; [/* Legal, powerful and */
ip = vp; /* dangerous!!! */

* Why is this being done?

23

Casting

* Usually casting is not required
* May be masking a problem

int *ip;
char *cp;
*Cp — ‘X’,’
*1p = 299
*ip = 42;

ip

CP

24

Warnings

e Using void pointers as a crutch to get around casting is a
“bad” thing!
*malloc doesn’'t care what you are doing with a block of

memory it allocates to you. What you do with the memory is
your responsibility

* Passing in random values to free is a bad thing!
« free can change contents of block that was freed

« free does not change pointer

« After a call to £ree it is usually possible to do anything to
the freed memory that was possible before the call!!!

* Definitely a bad thing!!!

25

Initializing Memory

* Use malloc when you do not need the memory initialized:

double *a; /* define a pointer */
a = malloc(100*sizeof (double)) ;

/* memory for 100 elements of type double
allocated - they have “random” values¥*/

a[5] = 4.5; /* use a as an array */

* Use calloc when you want to initialize allocated memory:

double *a; /* define a pointer */
a = calloc (100, sizeof (double)) ;

/* memory for 100 elements of type double
allocated and initialized with Os*/

a[5] = 4.5; /* use a as an array */

26

Reallocating memory

ptr2 = realloc(ptr, num bytes);

* What it does (conceptually)
* Find space for new allocation
* Copy original data into new space
* Free old space
* Return pointer to new space

27

Dynamic Allocation

eint *ip = malloc(...);

* malloc may allocate more space than requested
* Why?

* Efficiency

* Typically if you ask for 1 byte you will get 8.
* Given this line of code

e char *cp = malloc(1l);

* Which is more likely

* Program will probably keep this memory as is
* Program will eventually realloc

* How much can you safely use?

28

Safety

* Program should only use memory actually requested
* Big problem

* Program that oversteps bounds may work

* Sometimes!

* Note...
char *cp = malloc(1l);
ADDR SIZE
cp 8 (maybel)
* Now...

realloc(cp, 6) ;
* will return same pointer thus...

29

realloec

* May return same pointer passed to it without indicating any
problem (and it is not a problem)

* Using memory beyond that which has been allocated may
work

e Some of the time

* Normally it will work when tested by a programmer but will
fail when shipped to the customer

30

realloec

* Realloc may return
* same pointer

* different pointer
* NULL

* |s this a good idea?
cp = realloc(cp, n);
* NO!
 If realloc returns NULL cp is lost
* Memory Leak!

31

How to Do It

void *tmp;
if((tmp = realloc(cp,...)) ==
{

/* realloc error */

}

else

{
cp = tmp;

NULL)

32

Additional Information

e realloc (NULL, n) =malloc(n);

e [t can be used to make realloc work in a single loop

design to build a dynamic structure such as a linked list.

* Some people like to define wrappers around memory
allocation functions

void* xmalloc(size t size)

{
void* ptr = malloc(size);

if (!'ptr) abort(); else return ptr;
}

* realloc(cp, 0) = undefined behaviour

33

Dynamic Stack

/* stack.h */

void push (int a);
int pop(void) ;

int peek (void) ;
void clear (void) ;
void init(void) ;
void finalize (void) ;
int empty (void) ;

/* stack.c */

#include <assert.h>

#include <stdlib.h>

#include <stdio.h>

#include "stack.h"

static unsigned int top;

/* first free slot on the stack */
static int *data;

static unsigned int size;

void init(void)

{
top=0;
size=0;
data=0;

}

void finalize (void)

{

free (data) ;

}

void clear (void)

{
top=0;

}
int empty(void)

{

return (top==0) ;

}

34

Dynamic Stack

void push(int a)
{
if (top>=size)
{
unsigned int newsize=(size+l) *2;
int* ndata=realloc(data,newsize*sizeof (int)) ;
if (ndata)
data=ndata;
else
{
free (data) ;
abort () ;
}
fprintf (stderr,"Stack size %d -> %d\n",size,newsize);
size=newsize;
}
data[top++]=a;
}
int pop(void)
{
assert (top>0) ;
return data[--top];
}
int peek (void)
{
assert (top>0) ;
return data[top-1];

35

size t

* Some unsigned type

* The maximum value of variable of this type can be obtained
using the expression

(size t)-1

» C99 defines the constant SIZE MAX for that purpose

36

Dynamic Stack Revisited

void push (int a)

if (top>=size)

{
unsigned int newsize;
int* ndata;

if (size == 0)
newsize = 1;
else if (size <= UINT MAX/2)
newsize = 2 * size;
else
{
free(data) ;
abort () ;

}

if (newsize <= ((size t)-1) / sizeof(int))
ndata=realloc (data,newsize*sizeof (int)) ;
else
{
free (data) ;
abort () ;

}

if (ndata)
data=ndata;
else
{
free (data) ;
abort () ;
}
fprintf (stderr,"Stack size %d -> %d\n",size,newsize) ;
size=newsize;
}
data[topt++]=a;
}

37

Reading Lines from Standard Input

char* readline ()

{

char* line = NULL;

int c;

size_ t bufsize = 0;

size t size = 0;
while ((c=getchar()) !'= EOF)

{

if (size >= bufsize)

{

char* newbuf;
if (bufsize == 0)
bufsize = 2;

else if (bufsize <= ((size t)-1)/2)

bufsize = 2*size;
else
{
free(line) ;
abort () ;
}
newbuf = realloc(line,bufsize);
if ('newbuf)
{

free(line) ;
abort () ;
}

line = newbuf;

line[size++]=c;
if (¢ == '\n') break;

}

if ((c == EOF) && (size == 0))
return NULL;
if (size >= bufsize)
{
char* newbuf;
if (size < (size_t)-1)
bufsize = size + 1;
else
{
free(line) ;
abort () ;
}

newbuf = realloc(line,bufsize);
if ('newbuf)
{
free (line) ;
abort () ;
}
line = newbuf;
}
line[size++]='\0";
return line;

38

Two-Dimensional Arrays

* Pointer to a pointer

* Must first allocate the
storage for the pointers
to the rows, then for the
contents

-

15

A\

int i;

const int rows = 6, cols = 5;

double **a;

a = malloc (rows * sizeof (double *));
if('a) abort():

for (1 = 0; i < rows; i++)

{

a[i] = malloc (cols * sizeof (double));

if('a[i]) abort():
}
/* use a */
al[0] [0]=15;
al[4] [3]=28;
/* free a */
for (i = 0; i < rows; i++)
free (al[i]);
free (a);

i

’/,)V
>

l

28

/[|

[V e

39

Two-Dimensional Arrays

L~

\/‘\

=

28

* Can allocate storage to all
the rows at once

double **b;
const int rows = 6, cols = 5;
int 1i;

b = malloc (rows * sizeof (double *));
if('b) abort():
b[0] = malloc (rows * cols * sizeof (double));
if('b[0]) abort();
for (i = 1; 1 < rows; i++)
b[i] = b[i-1] + cols;
/* use b */
b[0] [0]=15;
b[4] [3]=28;
/* free b */
free (b[0]);
free (b);

40

Printing Lines in Reverse Order

#include <stdio.h>
#include <stdlib.h>
#include "readline.h"

int main ()
{
char **lines = NULL;
size t nolines = 0;
size t nolinesmax = 0;
char *line;
size t i;

while ((line =
{

if (nolines >= nolinesmax)

{

readline ()))

char **newlines;

if (nolines == 0)
nolinesmax = 1;
else if (nolines <= ((size t) - 1)

/ 2 / sizeof (char *))
{

nolinesmax =

}

2 * nolines;

}

else
goto error;
newlines = realloc (lines,

nolinesmax * sizeof (char *));
if (newlines NULL)
goto error;
lines = newlines;

}

lines[nolines++] = line;

}

for (1 =
{
printf ("%s", lines[i - 1]);
free (lines[i - 1]);
}
free (lines);
return O;

nolines; i > 0; i--)

error:

for (i = nolines; i > 0O;
free (lines[i - 1]);

free (lines);

abort () ;

i--)

41

strdup

» strdup duplicates a string

* |t is not a standard function, although is present in many
systems

* If your system does not have it, you can define it yourself
char* strdup (const char* s)

{
char* p = 0;
p = malloc(strlen(s)+1);
if (p)
strcpy (p, s);
return p;

}

* Why +1? Why check p? What are the “ownership
semantics™?

42

strdup

 Calling strdup
int main()
{
/* Make a copy: strdup allocates memory! */

char* copy = strdup("surgeon") ;

/* Use a copy */
printf ("Like a %s\n", copy);

/* Deallocate memory */
free (copy) ;
copy = NULL; /* So we don't accidentally use it */

return 0O;

43

free

* Make sure to free memory once your done with it

* Always set the variable to NULL after freeing it (Why?)
char* psz = strdup("Hello");
free (psz);
psz = 0;

* Don’t try to free the same variable twice in a row:
char* psz = strdup('"Hello")
free (psz);
free (psz); /* boom! */

* Don't try to free a variable that's pointing to statically
allocated memory:

char* psz = "Hello";
free (psz); /* bye bye! */

44

Memory Leaks

 Memory leaks occur when you forget to call free

* Unlike Java, C has no automatic garbage collection

 Particularly fatal to long-running processes that do many
allocations (e.g. servers, daemons)

* Usually the result of
e Simple forgetfulness
* Multiple return paths

» Reassigning the pointer without calling £ree first, esp. for
in/out parameters

* When freeing a structure, forgetting to also free the structure
members

* Not realizing when a function allocates memory that the caller
IS responsible for freeing

45

Memory Leaks

* Once a leak has been introduced, can be very hard to track
down

* You need to carefully track variables that are associated
with dynamic memory line by line, from birth to death

* Memory profilers helpful — ElectricFence, valgrind
* Besides memory, what other things can be leaked?

46

Dynamic Allocation — What Can Go Wrong

* Allocate a block of memory and use the contents without
Initialization
 Free a block but continue to use the contents

» Call realloc to expand a block of memory and then once
moved continue to use the old address

 Allocate a block and lose it by losing the value of the pointer
* Read or write beyond the boundaries of the block
 FAIL TO NOTICE ERROR CONDITIONS

47

Typical Errors and valgrind

#include <stdio.h> [/* 1%/
#include <stdlib.h> /* 2%/
#include <assert.h> /* 3%/
[* 4%/

int /* 5%/
main () [* 6%/
{ [* T*/
char* pl, *p2; /* 8%/
/* 9%/

pl=malloc(10); /*10%*/
printf("%c\n",pl[0]); /*11%*/
free(pl) ; [*12%/
*pl='a’'; /*13%/
pl=malloc(10); /*14%/
p2=realloc(pl,10000); /*15%/
*pl='b'; /*16*/
malloc(30); [*17*/
p2[10000]="c'; /*18*/
pl=malloc(2000000000) ;/*19*/
*pl='c'; /*20%/
return 0; [*21%/
}i [*22%/

$ valgrind --leak-check=yes ./errors 2>rep

48

Typical Errors and valgrind

#include <stdio.h> [* 1%/
#include <stdlib.h> /* 2%/
#include <assert.h> /* 3%/
[* 4%/

int /* 5%/
main () [* 6%/
{ [* T*/
char* pl, *p2; /* 8%/
[* 9%/

pl=malloc(10); /*10%/
printf("$c\n",pl[0]); /*11*/
free(pl) ; [*12%/
*pl='a’'; /*13%/
pl=malloc(10); /*14%/
p2=realloc(pl,10000); /*15%/
*pl='b'; /*16*/
malloc(30); [*17*/
p2[10000]="c'; /*18*/
pl=malloc(2000000000) ;/*19*/
*pl='c'; /*20%/
return 0; [*21%/
}i [*22%/

$ valgrind --leak-check=yes ./errors 2>rep

Conditional jump or move depends on uninitialised value(s)
at 0x4027ACE2: IO vfprintf (in /lib/libc-2.2.5.s0)

by 0x402823B5: IO printf (in /lib/libc-2.2.5.s0)

by 0x8048428: main (errors.c:11)

by 0x4024814E: libc start main (in /lib/libc-2.2.5.s0)

Syscall param write (buf) contains uninitialised or unaddressable byte(s)

at 0x402F2404: libc write (in /lib/libc-2.2.5.s0)

by 0x40298E87: (within /lib/libc-2.2.5.s0)

by 0x40298DE5: IO do write (in /lib/libc-2.2.5.s0)

by 0x4029913F: IO file overflow (in /lib/libc-2.2.5.s0)
Address 0x40228000 is not stack'd, malloc'd or free'd

49

Typical Errors and valgrind

#include <stdio.h> [/* 1%/
#include <stdlib.h> /* 2%/
#include <assert.h> /* 3%/
[* 4%/

int /* 5%/
main () [* 6%/
{ [* T*/
char* pl, *p2; /* 8%/
/* 9%/

pl=malloc(10); /*10%*/
printf("%c\n",pl[0]); /*11%*/
free(pl); [*12%/
*pl='a /*13%/
pl=malloc(10); /*14%/
p2=realloc(pl,10000); /*15%/
*pl='b'; /*16*/
malloc(30); [*17*/
p2[10000]="c'; /*18*/
pl=malloc(2000000000) ;/*19*/
*pl='c'; /*20%/
return 0; [*21%/
}i [*22%/

$ valgrind --leak-check=yes ./errors 2>rep

Invalid write of size 1

at 0x8048437: main (errors.c:13)

by 0x4024814E: libc start main (in /lib/libc-2.2.5.s0)

by 0x8048350: (within /home/gwj/pdsc/03-lecture04/04-memerrors/errors)
Address 0x41050024 is 0 bytes inside a block of size 10 free'd

at 0x4002698D: free (vg_replace malloc.c:231)

by 0x8048433: main (errors.c:12)

by 0x4024814E: libc start main (in /lib/libc-2.2.5.s0)

by 0x8048350: (within /home/qwj/pdsc/03-lecture04/04-memerrors/errors)

50

Typical Errors and valgrind

#include <stdio.h> [/* 1%/
#include <stdlib.h> /* 2%/
#include <assert.h> /* 3%/
[* 4%/

int /* 5%/
main () [* 6%/
{ [* T*/
char* pl, *p2; /* 8%/
/* 9%/

pl=malloc(10); /*10%*/
printf("%c\n",pl[0]); /*11%*/
free(pl) ; [*12%/
*pl='a’'; /*13%/
pl=malloc(10); /*14%/
p2=realloc(pl,10000); /*15%/
*pl='b'; /*16*/
malloc(30); [*17*/
p2[10000]="c'; /*18*/
pl=malloc(2000000000) ;/*19*/
*pl='c'; /*20%/
return 0; [*21%/
}i [*22%/

$ valgrind --leak-check=yes ./errors 2>rep

Invalid write of size 1

at 0x8048462: main (errors.c:16)

by 0x4024814E: libc start main (in /lib/libc-2.2.5.s0)

by 0x8048350: (within /home/gwj/pdsc/03-lecture04/04-memerrors/errors)
Address 0x41050060 is 0 bytes inside a block of size 10 free'd

at 0x40026C58: realloc (vg_replace malloc.c:310)

by 0x804845B: main (errors.c:15)

by 0x4024814E: libc start main (in /lib/libc-2.2.5.s0)

by 0x8048350: (within /home/qwj/pdsc/03-lecture04/04-memerrors/errors)

51

Typical Errors and valgrind

#include <stdio.h> [/* 1%/
#include <stdlib.h> /* 2%/
#include <assert.h> /* 3%/
[* 4%/

int /* 5%/
main () [* 6%/
{ [* T*/
char* pl, *p2; /* 8%/
/* 9%/

pl=malloc(10); /*10%*/
printf("%c\n",pl[0]); /*11%*/
free(pl) ; [*12%/
*pl='a’'; /*13%/
pl=malloc(10); /*14%/
p2=realloc(pl,10000); /*15%/
*pl='b'; /*16*/
malloc(30); [*17*/
p2[10000]="c'; /*18%*/
pl=malloc(2000000000) ; /*19*/
*pl='c'; /*20%/
return 0; [*21%/
}i [*22%/

$ valgrind --leak-check=yes ./errors 2>rep

Invalid write of size 1

at 0x8048479: main (errors.c:18)

by 0x4024814E: libc start main (in /lib/libc-2.2.5.s0)

by 0x8048350: (within /home/gwj/pdsc/03-lecture04/04-memerrors/errors)
Address 0x410527AC is 0 bytes after a block of size 10000 alloc'd

at 0x40026C58: realloc (vg_replace malloc.c:310)

by 0x804845B: main (errors.c:15)

by 0x4024814E: libc start main (in /lib/libc-2.2.5.s0)

by 0x8048350: (within /home/qwj/pdsc/03-lecture04/04-memerrors/errors)

VG_(get memory from mmap): request for 2000003072 bytes failed.
VG (get memory from mmap): 14933038 bytes already allocated.

This may mean that you have run out of swap space,

since running programs on valgrind increases their memory
usage at least 3 times. You might want to use 'top'

to determine whether you really have run out of swap.

If so, you may be able to work around it by adding a
temporary swap file -- this is easier than finding a

new swap partition. Go ask your sysadmin(s) [politely!]

VG (get memory from mmap): out of memory! Fatal! Bye!

52

Typical Errors and valgrind

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

int

main ()

{
char* pl, *p2;

pl=malloc(10);

printf ("%c\n",pl[0]);

free(pl);

*p1=lal;
pl=malloc(10);
p2=realloc(p1,10000);
*p1='b';

malloc(30);
p2[10000]="c';

return 0;

}s

/*
/*
/*
/*
/*
/*
/*
/*
/*

1x/
2%/
3%/
4/
5%/
6%/
7*/
8*x/
9%/

/*10%/
/*11%/
/*12%/
[*13%/
/*14%/
/*15%/
/*16%/
/*17%/
/*18%/
[*19%/
/*20%/
/*21%/
[*22%/

$ valgrind --leak-check=yes ./errors2 2>rep

ERROR SUMMARY: 5 errors from 5 contexts (suppressed: 2 from 1)
malloc/free: in use at exit: 10030 bytes in 2 blocks.
malloc/free: 4 allocs, 2 frees, 10050 bytes allocated.

For counts of detected errors, rerun with: -v

searching for pointers to 2 not-freed blocks.
checked 3413768 bytes.

30 bytes in 1 blocks are definitely lost in loss record 1 of 2
at 0x400266DE: malloc (vg replace malloc.c:153)

by 0x8048470: main (errors2.c:17)

by 0x4024814E: libc start main (in /lib/libc-2.2.5.s0)

by 0x8048350: (within /home/gwj/pdsc/03-lecture04/04-memerrors/errors2)

10000 bytes in 1 blocks are definitely lost in loss record 2 of 2
at 0x40026C58: realloc (vg_replace malloc.c:310)

by 0x804845B: main (errors2.c:15)

by 0x4024814E: libc start main (in /lib/libc-2.2.5.s0)

by 0x8048350: (within /home/gwj/pdsc/03-lecture04/04-memerrors/errors2)

LEAK SUMMARY:
definitely lost: 10030 bytes in 2 blocks.
possibly lost: 0 bytes in 0 blocks.
still reachable: 0 bytes in 0 blocks.
suppressed: 0 bytes in 0 blocks.

Reachable blocks (those to which a pointer was found) are not shown.

To see them, rerun with: --show-reachable=yes

53

Structures

e A collection of member variables
* Very useful for grouping related data

struct Person

{

char* name;

int age;

54

Creating a Person

* Access member variables using a dot (.)

int main ()

{
struct Person artist;
artist.name = strdup ("Madonna")
artist.age = 37;
return O;

e Can anyone spot a problem?

55

Another Way to Initialize A Struct

e Similar to an array, can specify an initialization list
* In C90, initialization list can contain only constants
* In C99, we could move strdup to the initializer

int main ()
{
struct Person artist = { NULL, 37 };
artist.name=strdup ("Madonna") ;
if('artist.name) abort();
. use artist ...

/* Free memory allocated by strdup */
free (artist.name) ;

artist.name = 0;

return O;

56

Creating a Person Dynamically

« Can allocate space for a structure using malloc ()

* When accessing member variables of a pointer to a
structure use ->

int main ()
{
struct Person* artist = malloc(sizeof (struct Person)) ;
if('artist) abort();
artist->name = strdup ("Madonna") ;
if('artist->name) abort()
artist->age = 64;

. exploit artist ...

/* First, free the member wvariables */
free (artist->name) ;
artist->name = 0; /* So we don't use it */

/* Then, free the structure */

free (artist) ;

artist = 0; /* So we don't use it */
return O;

Structure typedefs

* You can make a typedef for the struct:
typedef struct Person SPerson;

e Or, similar to enums, often we'll combine the struct
declaration with a typedef:

typedef struct Person {
char* name;
int age;

} SPerson, *SPersonPtr;

e Can now say SPerson instead of
struct Person

58

Nested Structures

* Can nest structures arbitrarily

typedef struct Date ({
int mon, day, year;
} SDate, *SDatePtr;

typedef struct Person ({
char* name;
SDate dob;

} SPerson, *SPersonPtr;

59

Nested Structures

* Mixture of static (.) and pointer (->) memory access

int

main ()

{
SPerson *artist = malloc (sizeof (SPerson));
if('artist) abort();

artist->name = strdup ("Madonna") ;
if('artist->name) abort():;
artist->dob.day = 5;
artist->dob.mon = 11;
artist->dob.year = 1967;

/* Free memory allocated by strdup */
free (artist->name) ;
artist->name = 0;

/* Free the person */
free (artist);

artist = 0;

return O;

60

Self-referential Structures

* A structure can have member variables that point to the
same structure type

typedef struct Person {
char* name;
SDate dob;
struct Person* parents[2];
} SPerson, *SPersonPtr;

61

Self-referential Structures

SPerson parents|[2];
SPerson artist;

strdup ('"Madonna") ;
strdup ("Silvio") ;

parents[0] .name =
parents[1l] .name =
artist.name = strdup("Madonna") ;
artist.parents[0] &parents[0] ;
artist.parents[1] &parents[1l];

printf ("%$s's parents are %$s and %s\n",
artist.name, artist.parents[0]->name, artist.parents[1l]->name) ;

* Most frequently, dynamic memory allocation is used in such
cases

62

Structures and sizeof

* Due to memory alignment restrictions, the size of a structure
is >= the sum of the sizes of its member variables

Memory layout

struct blah {

X
char x;
int v ylylyly
char z; -
}; = Padding

* Always use sizeof to determine the size of a structure
e sizeof (struct blah) =12 bytes

63

Structure Bit Fields

* Recall bit flags and bit masks

* Useful when we need to pack several flags or objects into
the smallest amount of space possible

e Structure bit fields make this a little easier at the cost of
portability

struct argb {
unsigned int alpha :

. e

unsigned int red
unsigned int green :

O 0 0 00

unsigned int blue

};

* Implementation-dependent!

64

Unions

* Syntactically similar to structures

* However, all member variables occupy the same location in
memory

* You are responsible for accessing the right members at the
right time

* Union size is size of the largest member

union UBlah {

Memory layout
char x;

X.y,z] 'y y y

int vy,

char z;

};

Unions

union {
char x;

int Y-
char* z;
} utype;
utype.x = 'c';

printf ("%$c\n", utype.x);

utype.z = "Hello";

printf ("$s\n", utype.z);

printf ("$d\n", utype.y); /* Undefined! */

66

