
1
1

Data StructureData Structure

● Before we go into details, what is a data structure exactly?

● To answer that, we must first understand:
● What is a computer program?

2
2

Computer ProgramComputer Program
Input

Some mysterious
processing

Output

● How to solve the following problems:
● Input 3 numbers, print out the maximum.
● Input 30000 numbers, print out the largest 10 numbers.
● Input the list of cities and the distances among them, find the

shortest path from city A to city B

3
3

Data StructuresData Structures

● Data structures let the input and output be represented in a
way that can be handled efficiently and effectively.

● Data structures + Algorithms = Programs

array

Linked list

tree
queue

stack

4
4

Top - Down DesignTop - Down Design

Human

Problems

Ad hoc approach
You solved the problem.

But, no one knows how

you did it.

Black
Box

Result

5
5

Top - Down DesignTop - Down Design

Human

Problems

Systematic approach

...

Result

...
Sub-problems

(stepwise refinement)

6
6

Top-Down DesignTop-Down Design

● The algorithm chosen to solve a particular programming
problem helps to determine which data structure should be
used.

● The data structure selected has a great effect on the
details and the efficiency of the algorithm.

7
7

Top-Down DesignTop-Down Design

● The advantages of top-down design include:
● Top-down design provides a systematic way of solving

problems.
● The resulting solution is modular. The steps can be coded,

debugged, modified, and enhanced independently without
affecting other steps.

● The resulting solution is simpler to follow, because one can
digest it piece by piece, rather than having to swallow the
whole thing at once.

● Well-designed pieces can be re-used in other tasks.
● By beginning at the top, one may identify common

subprograms from the start and solve them once, instead of
redesigning a solution each time one reappears.

8
8

Bottom-Up Design - Virtual MachinesBottom-Up Design - Virtual Machines

The onion model

Hardware

(CPU, memory,…)
Assembly language

C, Fortran, Pascal,...
Applications

9
9

Bottom-Up DesignBottom-Up Design
● Bottom-up design does not break down into steps that the

language can handle. Instead it builds the language up by
adding more and more powerful constructs until the language
can be used to solve the program directly.

● For example, consider writing a program that reads in,
evaluates, and prints out rational expressions:

● input : (3/28 + 2/7) * 4/3 - 1
● output: 61/84

● C does not have the capability to represent and manipulate
rational numbers directly.

● Therefore, the first step would be to extend C by adding
functions to implement the rational operations of +, -, *, and /, in
addition to writing functions that read in and print out rational
values.

● A rational number package may be useful for a wide variety of
programs, not just the one currently being written.

10
10

Program Design with CProgram Design with C

● Usually, programs are designed using a combination of
top-down method and the bottom-up method. A
programmer starts with the problem, breaks it down into
subprograms, then discovers that a particular package of
functions would be useful.

11
11

Design for Reuse - Separate CompilationDesign for Reuse - Separate Compilation
#ifndef RATIONALS
#define RATIONALS
#include <stdio.h>
typedef struct {
 int num, denom;
} Rational;

int readRat(Rational *);
int writeRat(Rational);
Rational addRat(Rational,Rational);
Rational subRat(Rational,Rational);
Rational multRat(Rational,Rational);
Rational divRat(Rational,Rational);
#endif RATIONALS

● The advantages of separate compilation are threehold:
● Should a change be necessary, only the affected file need to

be recompiled. After recompilation all files are relinked
together. This process usually takes much less time than
recompiling everything.

● The unit can be used in different programs without modifying
any of its code.

● The header file contains all the information necessary to use
the package of functions.

12
12

Abstract Data TypesAbstract Data Types

● There is one major improvement that can be made to this
method of designing programs.

● Often the operations in a package do not depend on the
particular data types manipulated by the main program.

● It is useful to implement such a package of operations so
that the code does not depend on the particular data types.

13
13

Abstract Data TypesAbstract Data Types

● A data type whose operations are independent of its
specific characteristics is called an abstract data type
(ADT).

● For example, if a SET is an ADT, we can define:
● size(): return the number of elements in the set
● isEmpty(): return if the set is empty or not
● insertElement(), isMember(), union(), intersect(),
subtract(), isEqual().

● All the above is independent of what are in the SET.

14
14

Abstract Data TypesAbstract Data Types

● Consider the following two programming tasks:
● Task 1. A concordance program. This program will read in text

from the standard input and then print out each word that
occurs in the input along with the number of times that the
word occurs in the input.

● Task 2. A banking program. This program will read in a list of
transactions. Each transaction consists of an account number,
a date, and an amount. Then a statement is printed for each
account, showing the balance and the list of transactions for
that account listed in the order in which they were read into the
program. For the sake of simplicity, assume that accounts
have at most ten transactions, all account balances are initially
zero, and that the account numbers, dates, and amounts are
all integers.

15
15

Abstract Data TypesAbstract Data Types

● At first glance these two programs seem to have nothing to
do with each other.

● But, let us take a closer look.

16
16

Abstract Data TypesAbstract Data Types

● Top-down program breakdowns
Concordance Program:

While not at the end of the input

Read in a word.

Look up the word (and its associated count) in some data structure

If the word is found, then increment its count and store the new
value back in the data structure.

If the word is not found, then add it to the data structure with an
associated count of 1.

For each word in the data structure,

Print out the word and its associated count.

17
17

Abstract Data TypesAbstract Data Types

● Top-down program breakdowns
Banking Program:

While not at the end of the input
Read in a transaction

Look up the account number (and its associated balance and list of
transactions) in some data structure.

If the account number is found, then add the amount to the account's
balance, and add the transaction to the account's list of transactions
and store this new information back in the data structure.

If the account number is not found, then add the account number to
the data structure along with the transaction amount as the balance,
and a list of transactions containing just the one transaction.

For each account in the data structure,
Print out the account number, its balance, and its list of transactions.

18
18

Abstract Data TypesAbstract Data Types

● The common part:
● Routine for finding some data record based on a key
● Routine for replacing the data with new information
● Routine for creating a new record with a new key

● These routines should not depend on
● the type of the data stored
● the type of the key used

● But should be affected by:
● how the data records are stored
● what algorithms are used to find and retrieve the data

19
19

Abstract Data TypesAbstract Data Types

● The process of separating what operations are done to the
data and the means of storing the data from the particular
type of data is the basis of an abstract data type.

● An abstract data type can be defined by the operations
that are done on the data regardless of its type.

20
20

Abstract Data TypesAbstract Data Types

● Common operations for simple database ADT
1)Find the data associated with a particular key.
2)Replace the data associated with a key with new data.

3)Add a new key and its associated data.
4)Perform an operation on each key and its associated data.

21
21

Abstract Data TypesAbstract Data Types

● The use of ADT divides the programming task into two
steps:

1)Implement the operations of the ADT, choose a particular
data structure to represent the ADT, and write the functions to
implement the operations.

2)Write the main program which calls the functions of the ADT.

22
22

Abstract Data TypesAbstract Data Types

● The main program can access the data in the ADT only by
calling the functions of the ADT; it cannot directly access
or change any of the values stored in the internal data
structures of the ADT.

● Does it make the programming more difficult?
● This is actually the key to the usefulness of an ADT.

23
23

The Simple Database ADTThe Simple Database ADT
int findRec(dbkeytype key,dbdatatype *data,indextype *idx);
/* Action: Looks up key in the simple database.
 If a record with that key exists, findRec returns 1,
 data is the data of the record, and idx is an indicator
 of where the record is stored. If no record is found,
 then findRec returns 0, idx is an indicator of where
 the record should be put, and data is undefined. */

int createRec(dbkeytype key,dbdatatype data,indextype idx);
/* Precondition: idx should indicate where the new record is to go.
 Action: Adds a new record with key and data to the simple database.
 Returns 1 for success, 0 for failure (database is full). */

void setRec(indextype idx,dbdatatype data);
/* Precondition: idx should indicate where the new record is to go.
 Action: Changes the data of the record indicated by idx to be data. */

void eachRec(void (*fn)(dbkeytype key,dbdatatype data));
/* Action: Applies the function fn to each record (using key and data)
 in the simple database. */

● key is:
● the word as char[21] in a concordance program
● account number as an integer in a banking program

24
24

The Simple Database ADTThe Simple Database ADT

/* concordance.c */
include <stdio.h>
include "database.h"

void printCount(char *word,int n)
{ printf("%20s %5d\n",word,n); }

int main()
{ char word[21];
 int count;
 indextype idx;
 while (scanf ("%20s " , word) ==1) {
 if (findRec(word, &count,&idx))
 setRec (idx, count + 1) ;
 else if (!createRec (word, l,idx))
 printf("Error: cannot add word %s. Database full.\n”,word); }
 eachRec(&printCount);
 return 0;
}

● The main program

25
25

The Simple Database ADTThe Simple Database ADT

/* database.h */
#ifndef DATABASE
#define DATABASE
#include <stdio.h>
#include "words.h"

typedef struct dbrec {
 dbkeytype key;
 dbdatatype data;
} Dbrec;

typedef Dbrec *indextype;

int findRec(dbkeytype, dbdatatype *,indextype *);
int createRec(dbkeytype, dbdatatype, indextype);
void setRec(indextype, dbdatatype);
void eachRec(void (*)(dbkeytype, dbdatatype));
#endif

● database.h for an array implementation

26
26

The Simple Database ADTThe Simple Database ADT

/* words.h */
#ifndef WORDS
#define WORDS
#include <stdio.h>
#include <string.h>

typedef char dbkeytype[21];
typedef int dbdatatype;

#define comparedbkey(s1,s2) ((int)(strcmp((s1),(s2))))
#define copydbkey(s1,s2) (strcpy((s2),(s1)))
#define copydbdata(d1,d2) ((d2)=(d1))
#endif

● Definitions of data types and operations for the
concordance program

27
27

List ADTList ADT

void initList(List *list);
/* Action: Creates an empty list */
int addList(List *list, listdatatype data);
/* Action: Adds data to the list.
 Returns 1 on success, 0 otherwise (the list is full) */
void eachElement(List list, void (* fn)(listdatatype));
/* Action: Applies the function fn to each element of the list */

● List operations

28
28

Algorithm DesignAlgorithm Design

Human

Problems
Result

Input Data

Structures Processing
Output Data

Structures

Computer

Algorithms

29
29

Algorithm DesignAlgorithm Design

● For a problem, what is an optimal solution ?
● CPU time
● Memory

● Example: Given 4 numbers, sort it to nonincreasing order.
● Method 1: Sequential comparison

1. Find the largest (3 comparisons)

2. Find the second largest (2 comparisons)

3. Find the third largest (1 comparisons)

4. Find the fourth largest
● A total of 6 comparisons

30
30

Algorithm DesignAlgorithm Design

● Example: Given 4 numbers, sort it to nonincreasing order.
● Method 2: Somewhat clever method

a1 a2 a3 a4

a2 a4

a4

a2 a3

a3

a2 a3

a2

a1 a3

a3 or a1

(4 comparisons)

(5 comparisons)

31
31

Greedy AlgorithmsGreedy Algorithms

● A greedy algorithm takes an action that seems the best at
the given time, without consideration of future actions.

● Example: Coin changing problem
● Make change for any amount from $0.01 to $0.99 using the

fewest number of coins. The available coins are $0.5, $0.25,
$0.1, $0.05, and $0.01.

● $0.94=$0.5+$0.25+$0.1+$0.05+4*$0.01
● A total of 8 coins
● Greedy algorithm works for U.S. coins. But not necessarily so

for others. See Chapter 2 Exercise 1 in D&S

32
32

Greedy AlgorithmsGreedy Algorithms

Hill climbing concept

Local optimum Global optimum

33
33

Divide-and-Conquer AlgorithmsDivide-and-Conquer Algorithms

● Example:
● Finding the minimum number in a list of numbers

● Merge sort
● Quick sort

int minimum(int a[],lower,upper)
{
 if (upper==lower) return a[upper];
 if ((upper-lower) == 1) return min(a[upper],a[lower]);
 else return min(minimum(a,lower,(lower+upper)/2),
 minimum(a,(lower+upper)/2+1,upper));
}

35
35

Dynamic Programming AlgorithmsDynamic Programming Algorithms

● Often a problem can be solved by divide-and-conquer, but
it may turn out to be an inefficient algorithm because much
work is duplicated when solving the subproblems (or
because the conquer (merge) step is too complicated).

36
36

Dynamic Programming AlgorithmsDynamic Programming Algorithms

● The Fibonacci numbers

F(5)

F(3)

F(4)

F(1)
F(2)

F(2)
F(3) F(1)

F(2)

Many repetitive calculations

















.2 if)1()2(

,2 if 1

,1 if 1

)(

iiFiF

i

i

iF

int Fibonacci(n)
{
 if (n<2) return 1;
 else return Fibonacci(n-1)+Fibonacci(n-2);
}

37
37

Dynamic Programming AlgorithmsDynamic Programming Algorithms

● The Fibonacci numbers
● Better implementation

● Example of one-dimensional dynamic programming

/* C99 only */
int Fibonacci(int n)
{
 int data[n];
 data[0]=1; data[1]=1;
 for (j=2; j<n; j++) data[j]=data[j-2]+data[j-1];
 return data[n-1];
}

38
38

Dynamic Programming AlgorithmsDynamic Programming Algorithms

● The number of combinations

)!(!
!
rnr

n
r

n












.0for
1

11

or 0 if 1

nr
r

n

r

n

r

n

rnr
r

n





















 



















39
39

Dynamic Programming AlgorithmsDynamic Programming Algorithms

● The number of combinations
● The Pascal’s triangle

0 1 2 3 4 ...

0
1
2
3
4
...

1
1
1
1
1
...

1
2
3
4
...

1
3
6
...

1
4
...

1










r

n
n

r

40
40

Backtracking AlgorithmsBacktracking Algorithms

● The tic-tac-toe game
● How can a computer play the game?

x x

41
41

Backtracking AlgorithmsBacktracking Algorithms

x

x

0 1 2

0

1

2

: Computer x: Human

(1,1)C

(0,0)H (0,1)H (0,2)H (1,0)H...

(0,0)C, (0,1)C, (1,0)C...

(0,1)H, (1,0)H, …, (2,2)H

(0,1)C, (1,0)C, (1,2)C, (2,0)C...

42
42

Backtracking AlgorithmsBacktracking Algorithms

● 3 missionaries and 2 cannibals want to cross the river
● Condition:

1. A boat can take one or two (must include a missionary)
2. At any time, on either bank, the number of missionaries
 must not be less than the number of cannibals.

