
1

LinkingLinking

Topics
● Static linking
● Object files
● Static libraries
● Loading
● Dynamic linking of shared libraries

2

A Simplistic Program Translation SchemeA Simplistic Program Translation Scheme

Problems:
• Efficiency: small change requires complete recompilation
• Modularity: hard to share common functions (e.g. printf)

Solution:
• Static linker (or linker)

Translator

m.c

p

ASCII source file

Binary executable object file

(memory image on disk)

3

A Better Scheme Using a LinkerA Better Scheme Using a Linker

Linker (ld)

Translators

m.c

m.o

Translators

a.c

a.o

p

Separately compiled
relocatable object files

Executable object file (contains code and data
for all functions defined in m.c and a.c)

4

Translating the Example Program Translating the Example Program
Compiler driver coordinates all steps in the translation and

linking process.
● Typically included with each compilation system (e.g., gcc)
● Invokes preprocessor and compiler (cc1), assembler (as),

and linker (ld).
● Passes command line arguments to appropriate phases

Example: create executable p from m.c and a.c:

bash> gcc -O2 -v m.c a.c -o p
cc1 m.c -O2 [args] -o /tmp/cca07630.s
as [args] -o /tmp/cca076301.o /tmp/cca07630.s
<similar process for a.c>
ld -o p [system obj files] /tmp/cca076301.o /tmp/cca076302.o
bash>

5

Why Linkers?Why Linkers?
Modularity

● Program can be written as a collection of smaller source files,
rather than one monolithic mass.

● Can build libraries of common functions (more on this later)
● e.g., Math library, standard C library

Efficiency
● Time:

● Change one source file, compile, and then relink.
● No need to recompile other source files.

● Space:
● Libraries of common functions can be aggregated into a single

file...
● Yet executable files and running memory images contain only

code for the functions they actually use.

6

What Does a Linker Do?What Does a Linker Do?

Linker:
● merges multiple relocatable (.o) object files into a single

executable object file that can loaded and executed by the
loader.

● resolves external references
External reference: reference to a symbol defined in another
object file.
References can be in either code or data
code: a(); /* reference to symbol a */
data: int *xp=&x; /* reference to symbol x */
Suppose:
● module B defines a symbol p;
● module A refers to p.
 The linker must:
● determine the location of p in the object module obtained

from merging A and B; and
● modify references to p (in both A and B) to refer to this

location.

call p

p: ...

call

p: ...

unlinked modules linked modules

7

Fixing AddressesFixing Addresses

● Addresses in an object file are usually
relative to the start of the code or
data segment in that file.

● When different object files are
combined:
● The same kind of sctions (text,

data, read-only data, etc.) from the
different object files get merged.

● Addresses have to be “fixed up” to
account for this merging.

● The fixing up is done by the linker,
using information embedded in the
executable for this purpose
(“relocations”).

call p

p: ...

call

p: ...

unlinked modules linked modules
0

100

0
250

0

100

50

8

Information for Symbol ResolutionInformation for Symbol Resolution

● Each linkable module contains a symbol table,
whose contents include:
● Global symbols defined (maybe referenced) in the

module.
● Global symbols referenced but not defined in the

module (these are generally called externals).
● Segment names (e.g., text, data, rodata).

● These are usually considered to be global symbols
defined to be at the beginning of the segment.

● Non-global symbols and line number information
(optional), for debuggers.

9

Actions Performed by a LinkerActions Performed by a Linker

● Usually, linkers make two passes:
● Pass 1:

● Collect information about each of the object
modules being linked.

● Pass 2:
● Construct the output, carrying out address

relocation and symbol resolution using the
information collected in Pass 1.

10

Linker Actions: Pass 1Linker Actions: Pass 1

● Construct a table of all the object modules and their
lengths.

● Based on this table, assign a load address to each
module.

● For each module:
● Read in its symbol table into a global symbol table in the

linker.
● Determine the address of each symbol defined in the

module in the output:
 Use the symbol value together with the module load address.

11

Linker Actions: Pass 2Linker Actions: Pass 2

Copy the object modules in the order of their load addresses:
● Address relocation:

● find each instruction that contains a memory address;
● modify the address to point to the correct value

● External symbol resolution:
● For each instruction that references an external object,

insert the actual address for that object.

12

Executable and Linkable Format (ELF)Executable and Linkable Format (ELF)

Standard binary format for object files
Derives from AT&T System V Unix

● Later adopted by BSD Unix variants and Linux
One unified format for

● Relocatable object files (.o),
● Executable object files
● Shared object files (.so)

Generic name: ELF binaries
Better support for shared libraries than old a.out formats.

13

ELF Object File FormatELF Object File Format

Elf header
● Magic number, type (.o, exec, .so), machine, byte

ordering, etc.

Program header table
● Page size, virtual addresses memory segments

(sections), segment sizes.

.text section
● Code

.data section
● Initialized (static) data

.bss section
● Uninitialized (static) data
● “Block Started by Symbol”
● “Better Save Space”
● Has section header but occupies no space

ELF header

Program header table

(required for executables)

.text section

.data section

.bss section

.symtab
.rel.text
.rel.data
.debug

Section header table

(required for relocatables)

0

14

0

ELF Object File Format (cont)ELF Object File Format (cont)

.symtab section
● Symbol table
● Procedure and static variable names
● Section names and locations

.rel.text section
● Relocation info for .text section
● Addresses of instructions that will need to be modified in

the executable
● Instructions for modifying.

.rel.data section
● Relocation info for .data section
● Addresses of pointer data that will need to be modified in

the merged executable

.debug section
● Info for symbolic debugging (gcc -g)

ELF header

Program header table

(required for executables)

.text section

.data section

.bss section

.symtab
.rel.text
.rel.data
.debug

Section header table

(required for relocatables)

15

Example C ProgramExample C Program

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

16

Merging Relocatable Object Files into an Executable Object FileMerging Relocatable Object Files into an Executable Object File

main()m.o

int *ep = &e
a()

a.o

int e = 7

headers

main()

a()

0system code

int *ep = &e

int e = 7

system data

more system code

int x = 15
int y

system data

int x = 15

Relocatable Object Files Executable Object File

.text

.text

.data

.text

.data

.text

.data

.bss .symtab
.debug

.data

uninitialized data .bss

system code

17

Relocating Symbols and Resolving External ReferencesRelocating Symbols and Resolving External References
● Symbols are lexical entities that name functions and variables.
● Each symbol has a value (typically a memory address).
● Code consists of symbol definitions and references.
● References can be either local or external.

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Def of local
symbol e

Ref to external
symbol exit
(defined in
libc.so)

Ref to
external
symbol e

Def of
local
symbol
ep

Defs of local
symbols
x and y

Refs of local
symbols ep,x,y

Def of
local
symbol a

Ref to external
symbol a

18

m.om.o Relocation Info Relocation Info

Disassembly of section .text:

00000000 <main>:
 0: 55 push %ebp
 1: 89 e5 mov %esp,%ebp
 3: 83 ec 08 sub $0x8,%esp
 6: 83 e4 f0 and $0xfffffff0,%esp
 9: e8 fc ff ff ff call a <main+0xa>
 a: R_386_PC32 a
 e: c7 04 24 00 00 00 00 movl $0x0,(%esp)
 15: e8 fc ff ff ff call 16 <main+0x16>
 16: R_386_PC32 exit

Disassembly of section .data:
 00000000 <e>:
 0: 07 00 00 00

objdump -d -r m.o
objdump -d -r -j.data m.o

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c

19

a.oa.o Relocation Info (Relocation Info (.text.text))

a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Disassembly of section .text:

00000000 <a>:
 0: 55 push %ebp
 1: 8b 15 00 00 00 00 mov 0x0,%edx
 3: R_386_32 ep
 7: a1 00 00 00 00 mov 0x0,%eax
 8: R_386_32 x
 c: 89 e5 mov %esp,%ebp
 e: 8b 0a mov (%edx),%ecx
 10: 8b 15 00 00 00 00 mov 0x0,%edx
 12: R_386_32 y
 16: 5d pop %ebp
 17: 01 c8 add %ecx,%eax
 19: 01 d0 add %edx,%eax
 1b: c3 ret

20

a.oa.o Relocation Info (. Relocation Info (.datadata))

a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Disassembly of section .data:
00000000 <ep>:
 0: 00 00 00 00
 0: R_386_32 e
00000004 <x>:
 4: 0f 00 00 00

21

Executable After Relocation and External Reference Resolution (.Executable After Relocation and External Reference Resolution (.texttext))

08048390 <main>:
 8048390: 55 push %ebp
 8048391: 89 e5 mov %esp,%ebp
 8048393: 83 ec 08 sub $0x8,%esp
 8048396: 83 e4 f0 and $0xfffffff0,%esp
 8048399: e8 12 00 00 00 call 80483b0 <a>
 804839e: c7 04 24 00 00 00 00 movl $0x0,(%esp)
 80483a5: e8 06 ff ff ff call 80482b0 <_init+0x38>
 80483aa: 90 nop
...
080483b0 <a>:
 80483b0: 55 push %ebp
 80483b1: 8b 15 f4 94 04 08 mov 0x80494f4,%edx
 80483b7: a1 f8 94 04 08 mov 0x80494f8,%eax
 80483bc: 89 e5 mov %esp,%ebp
 80483be: 8b 0a mov (%edx),%ecx
 80483c0: 8b 15 f8 95 04 08 mov 0x80495f8,%edx
 80483c6: 5d pop %ebp
 80483c7: 01 c8 add %ecx,%eax
 80483c9: 01 d0 add %edx,%eax
 80483cb: c3 ret
 80483cc: 90 nop

22

Executable After Relocation and External Reference Resolution (.Executable After Relocation and External Reference Resolution (.datadata))

080494f0 <e>:
 80494f0: 07 00 00 00
080494f4 <ep>:
 80494f4: f0 94 04 08
080494f8 <x>:
 80494f8: 0f 00 00 00

int e=7;
int main() {
 int r = a();
 exit(0);
}

m.c

a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

23

Strong and Weak SymbolsStrong and Weak Symbols

Program symbols are either strong or weak
● strong: procedures and initialized globals
● weak: uninitialized globals

int foo=5;

p1() {
}

int foo;

p2() {
}

p1.c p2.c

strong

weak

strong

strong

24

Linker’s Symbol RulesLinker’s Symbol Rules

Rule 1. A strong symbol can only appear once.

Rule 2. A weak symbol can be overridden by a strong
symbol of the same name.
● references to the weak symbol resolve to the strong symbol.

Rule 3. If there are multiple weak symbols, the linker can
pick an arbitrary one.

25

Linker PuzzlesLinker Puzzles

int x;
p1() {}

int x;
p2() {}

int x;
int y;
p1() {}

double x;
p2() {}

int x=7;
int y=5;
p1() {}

double x;
p2() {}

int x=7;
p1() {}

int x;
p2() {}

int x;
p1() {} p1() {}

Link time error: two strong symbols (p1)

References to x will refer to the same

uninitialized int. Is this what you really want?

Writes to x in p2 might overwrite y!

Evil!

Writes to x in p2 will overwrite y!

Nasty!

Nightmare scenario: two identical weak structs, compiled by different compilers

with different alignment rules.

References to x will refer to the same initialized

variable.

26

Loading Executable BinariesLoading Executable Binaries

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

r/o segment

r/w segment

Executable object file for
example program p

Process image

0x08048000

stack segment

Virtual addr

0x080494e4

readelf -l p

When programs are loaded to memory, sections are
mapped to segments. A segment can contain information
from more than one section

27

Packaging Commonly Used FunctionsPackaging Commonly Used Functions

How to package functions commonly used by programmers?
● Math, I/O, memory management, string manipulation, etc.

Awkward, given the linker framework so far:
● Option 1: Put all functions in a single source file

● Programmers link big object file into their programs
● Space and time inefficient

● Option 2: Put each function in a separate source file
● Programmers explicitly link appropriate binaries into their programs
● More efficient, but burdensome on the programmer

Solution: static libraries (.a archive files)
● Concatenate related relocatable object files into a single file with an index (called an

archive).
● Enhance linker so that it tries to resolve unresolved external references by looking for the

symbols in one or more archives.
● If an archive member file resolves reference, link into executable.

28

Static Libraries (archives)Static Libraries (archives)

Translator

p1.c

p1.o

Translator

p2.c

p2.o libc.a
static library (archive) of
relocatable object files
concatenated into one file.

executable object file (only contains code and
data for libc functions that are called from p1.c
and p2.c)

Further improves modularity and efficiency by packaging commonly
used functions [e.g., C standard library (libc), math library (libm)]

Linker selectively only the .o files in the archive that are actually
needed by the program.

Linker (ld)

p

29

Creating Static LibrariesCreating Static Libraries

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

libc.a

Archiver (ar)

... Translator

random.c

random.o

ar rs libc.a \
 atoi.o printf.o … random.o

Archiver allows incremental updates:
• Recompile function that changes and replace .o file in archive.

C standard library

30

Commonly Used LibrariesCommonly Used Libraries
libc.a (the C standard library)

● 2 MB archive of 1265 object files.
● I/O, memory allocation, signal handling, string handling, data and time, random numbers,

integer math

libm.a (the C math library)
● 500 kB archive of 401 object files.
● floating point math (sin, cos, tan, log, exp, sqrt, …)

% ar -t /usr/lib/libc.a | sort
…
fork.o
…
fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o
…

% ar -t /usr/lib/libm.a | sort
…
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinl.o
…

31

Using Static LibrariesUsing Static Libraries

Linker’s algorithm for resolving external references:
● Scan .o files and .a files in the command line order.
● During the scan, keep a list of the current unresolved

references.
● As each new .o or .a file obj is encountered, try to resolve

each unresolved reference in the list against the symbols in
obj.

● If any entries in the unresolved list at end of scan, then error.
Problem:

● Command line order matters!
● Moral: put libraries at the end of the command line.

bass> gcc -L. libtest.o -lmine
bass> gcc -L. -lmine libtest.o
libtest.o: In function `main':
libtest.o(.text+0x4): undefined reference to `libfun'

32

Shared LibrariesShared Libraries

Static libraries have the following disadvantages:
● Potential for duplicating lots of common code in the executable files on a

filesystem.
● e.g., every C program needs the standard C library

● Potential for duplicating lots of code in the virtual memory space of many
processes.

● Minor bug fixes of system libraries require each application to explicitly
relink

Solution:
● Shared libraries (dynamic link libraries, DLLs) whose members are

dynamically loaded into memory and linked into an application at run-
time.
● Dynamic linking can occur when executable is first loaded and run.

● Common case for Linux, handled automatically by ld-linux.so.
● Dynamic linking can also occur after program has begun.

● In Linux, this is done explicitly by user with dlopen().
● Basis for High-Performance Web Servers.

● Shared library routines can be shared by multiple processes.

33

Dynamic LinkingDynamic Linking

 Defers much of the linking process until the program starts
running.

 Easier to create, update than statically linked shared
libraries.

 Has higher runtime performance cost than statically linked
libraries:
 Much of the linking process has to be redone each time a

program runs.
 Every dynamically linked symbol has to be looked up in the

symbol table and resolved at runtime.

34

Dynamically Linked Shared Libraries Dynamically Linked Shared Libraries

libc.so functions called by m.c

and a.c are loaded, linked, and
(potentially) shared among processes.

Shared library of dynamically
relocatable object files

Translators

(cc1, as)

m.c

m.o

Translators

(cc1, as)

a.c

a.o

libc.so

Linker (ld)

p

Loader/Dynamic Linker

(ld-linux.so)

Fully linked executable
p’ (in memory)

Partially linked executable p
(on disk)

P’

35

The Complete PictureThe Complete Picture

Translator

m.c

m.o

Translator

a.c

a.o

libc.so

Static Linker (ld)

p

Loader/Dynamic Linker

(ld-linux.so)

libwhatever.a

p’

libm.so

36

Position-Independent Code (PIC)Position-Independent Code (PIC)

 If the load address for a program
is not fixed (e.g., shared
libraries), we use position
independent code.

 Basic idea: separate code from
data; generate code that doesn’t
depend on where it is loaded.

 PC-relative addressing can give
position-independent code
references.

This may not be enough, e.g.:
data references, instruction
peculiarities (e.g., call
instruction in Intel x86) may
not permit the use of PC-
relative addressing.

Library code

LIbrary data

Library code

LIbrary data

program 1 program 2

37

PIC (cont’d): ELF FilesPIC (cont’d): ELF Files

 ELF executable file characteristics:
 data pages follow code pages;
 the offset from the code to the data does not depend on

where the program is loaded.
 The linker creates a global offset table (GOT) that contains

offsets to all global data used.
 If a program can load its own address into a register, it can

then use a fixed offset to access the GOT, and thence the
data.

38

PIC code on ELF: cont’dPIC code on ELF: cont’d

Code to figure out its own address (x86):

 call L /* push address of next instruction on stack */
L: pop %ebx /* pop address of this instruction into %ebx */

Accessing a global variable x in PIC:
1) GOT has an entry, say at position k, for x. The dynamic

linker fills in the address of x into this entry at load time.
2) Compute “my address” into a register, say %ebx (above);
3) %ebx += offset_to_GOT; /* fixed for a given program */
4) %eax = contents of location k(%ebx) /* %eax = addr. of x */
5) access memory location pointed at by %eax;

39

PIC on ELF: ExamplePIC on ELF: Example

 GOT

xx0000 (load address unknown at link time)

data
segment

code
segment

xx1000

xx0010

fixed distance 0xff0
from GOT

 x's entry

 x

48

 call L
L: pop %ebx
 add $0xff0,%ebx
 movl 48(%ebx),%eax
 movl (%eax),...

40

PIC: Advantages and DisadvantagesPIC: Advantages and Disadvantages

Advantages:
 Code does not have to be relocated when loaded. (However,

data still need to be relocated.)
 Different processes can share the memory pages of code,

even if they don’t have the same address space allocated.
Disadvantages:

 GOT needs to be relocated at load time.
 In big libraries, GOT can be very large, so this may be slow.

 PIC code is bigger and slower than non-PIC code.
The slowdown is architecture dependent (in an architecture with
few registers, using one to hold GOT address can affect code
quality significantly.)

41

Dynamic Linking: Basic MechanismDynamic Linking: Basic Mechanism

 A reference to a dynamically linked procedure p is mapped
to code that invokes a handler.

 At runtime, when p is called, the handler gets executed:
 The handler checks to see whether p has been loaded

already (due to some other reference);
 if so, the current reference is linked in, and execution

continues normally.
 otherwise, the code for p is loaded and linked in.

42

Dynamic Linking: ELF FilesDynamic Linking: ELF Files

● ELF shared libraries use PIC (position independent code),
so text sections do not need relocation.

● Data references use a GOT:
● each global symbol has a relocatable pointer to it in the GOT;
● the dynamic linker relocates these pointers.

● We still need to invoke the dynamic linker on the first
reference to a dynamically linked procedure.
● Done using a procedure linkage table (PLT);
● PLT adds a level of indirection for function calls (analogous to the

GOT for data references).

43

ELF Dynamic Linking: PLT and GOTELF Dynamic Linking: PLT and GOT

 call p

data
segment

code
segment

 PLT

 GOT

 PLT entry for p

 GOT entry for p

program

 code for p

library

44

ELF Dynamic Linking: Lazy LinkageELF Dynamic Linking: Lazy Linkage

 Initially, GOT entry points to
PLT code that invokes the
dynamic linker.

offset identifies both the symbol
being resolved and the
corresponding GOT entry.

 The dynamic linker looks up the
symbol value and updates the
GOT entry.

 Subsequent calls bypass
dynamic linker, go directly to
callee.

 This reduces program startup
time. Also, routines that are
never called are not resolved.

 In PIC code on x86, %ebx must
contain the address of GOT
when PLT entry is called.

Before:

After:

 PLT
 jmp *GOT+m
 push #offset
 jmp dynamic linker

 GOT

call p

 PLT
 jmp *GOT+m
 push #offset
 jmp dynamic linker

 GOT

call p

p's code

